高级检索

    西藏山南列麦始新世花岗岩独居石U-Th-Pb年龄及地质意义

    曹华文, 李光明, 张林奎, 董磊, 高轲, 代作文

    曹华文, 李光明, 张林奎, 董磊, 高轲, 代作文. 西藏山南列麦始新世花岗岩独居石U-Th-Pb年龄及地质意义[J]. 沉积与特提斯地质, 2020, 40(2): 31-42. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0031-12
    引用本文: 曹华文, 李光明, 张林奎, 董磊, 高轲, 代作文. 西藏山南列麦始新世花岗岩独居石U-Th-Pb年龄及地质意义[J]. 沉积与特提斯地质, 2020, 40(2): 31-42. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0031-12
    CAO Huawen, LI Guangming, ZHANG Linkui, DONG Lei, GAO Ke, DAI Zuowen. Monazite U-Th-Pb age of Liemai Eocene granites in the southern Tibet and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(2): 31-42. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0031-12
    Citation: CAO Huawen, LI Guangming, ZHANG Linkui, DONG Lei, GAO Ke, DAI Zuowen. Monazite U-Th-Pb age of Liemai Eocene granites in the southern Tibet and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(2): 31-42. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0031-12

    西藏山南列麦始新世花岗岩独居石U-Th-Pb年龄及地质意义

    基金项目: 

    中国地质调查局项目(西藏山南地区铍锡多金属矿调查评价:DD20190147;冈底斯-喜马拉雅铜矿资源基地调查:DD20160015);国家自然科学基金项目(41802095)

    详细信息
      作者简介:

      曹华文(1988-),男,工程师,从事矿产地质调查研究。E-mail:caohuawen1988@126.com

    • 中图分类号: P581

    Monazite U-Th-Pb age of Liemai Eocene granites in the southern Tibet and its geological implications

    • 摘要: 西藏山南隆子县列麦地区始新世花岗岩的成岩时代和背景对喜马拉雅地区同碰撞阶段的构造演化具有重要意义。本文对隆子县列麦乡界归党村的白云母花岗岩开展独居石LA-ICP-MS U-Th-Pb测年,独居石40个测点的208Pb/232Th加权平均年龄为41±0.1Ma(MSWD=1.4),形成于始新世中期。结合区域上的始新世岩浆岩活动和区域变质作用,本文认为在50~45Ma印度下地壳发生中-高压变质和部分熔融;45Ma新特提斯洋洋壳板片断离,软流圈地幔上涌;45~41Ma喜马拉雅发生短暂的拉张环境导致大量的埃达克质岩浆岩侵位和麻粒岩的折返。
      Abstract: The age and tectonic setting of Eocene granites from Liemai in Longzi County, Tibet are of great significance to the tectonic evolution of the Himalayan region in the syncollision stage. In this paper, monazite LA-ICP-MS U-Th-Pb dating has been carried out for muscovite granites in Jieguidang. The weighted average age of 208Pb/232Th is 41 ±0.1 Ma (MSWD=1.4, n=40), which was formed in the Middle Eocene. Combined with the Eocene magmatic rocks and metamorphism in the region, it is considered that the middle high pressure metamorphism and partial melting occurred in the India lower crust at 50-45 Ma. The Neo-Tethys oceanic crust plate separated and the asthenosphere mantle upwelling occurred at 45 Ma. The Himalaya experienced a short-term extension environment, which resulted in a large number of adakitic magmatic rock emplacement and eclogite exhumation at 45-41 Ma.
    • [1] 侯增谦, 莫宣学, 杨志明, 等. 青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J]. 中国地质, 2006, 33(2):340-351.
      [2]

      Huang F, Zhang Z, Xu J, et al. Fluid flux in the lithosphere beneath southern Tibet during Neo-Tethyan slab breakoff:Evidence from an appinite-granite suite[J]. Lithos, 2019, 344-345:324-338.

      [3] Dai Z, Dong L, Li G, et al. Crustal thickening prior to 43 Ma in the Himalaya:Evidence from lower crust-derived adakitic magmatism in Dala, eastern Tethyan Himalaya, Tibet[J]. Geological Journal, 2020:待刊.
      [4]

      Wu F-Y, Liu X-C, Liu Z-C, et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J]. Lithos, 2020, 352-353:105319.

      [5]

      Lin C, Zhang J, Wang X, et al. Oligocene initiation of the South Tibetan Detachment System:Constraints from syn-tectonic leucogranites in the Kampa Dome, Northern Himalaya[J]. Lithos, 2020, 354-355:105332.

      [6]

      Ji W Q, Wu F Y, Chung S L, et al. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet[J]. Geology, 2016, 44(4):283-286.

      [7]

      Searle M P, Godin L. The south Tibetan detachment and the Manaslu Leucogranite:A structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal[J]. The Journal of geology, 2003, 111(5):505-523.

      [8]

      Cottle J, Lederer G, Larson K. The Monazite Record of Pluton Assembly:Mapping Manaslu Using Petrochronology[J]. Chemical Geology, 2019, 530:119309.

      [9] 曾强, 徐天德. 青藏高原东部雀儿山地区新近纪隆升速率探讨——来自雀儿山花岗岩体磷灰石裂变径迹证据[J]. 沉积与特提斯地质, 2019, 39(3):92-100.
      [10]

      Hamet J, Allègre C-J. Rb-Sr systematics in granite from central Nepal (Manaslu):Significance of the Oligocene age and high 87Sr/86Sr ratio in Himalayan orogeny[J]. Geology, 1976, 4(8):470-472.

      [11]

      Zeng L S, Gao L E, Tang S H, et al. Eocene magmatism in the Tethyan Himalaya, southern Tibet[J]. Geological Society, London, Special Publications, 2015, 412:287-316.

      [12]

      Cottle J M, Searle M P, Jessup M J, et al. Rongbuk re-visited:Geochronology of leucogranites in the footwall of the South Tibetan Detachment System, Everest Region, Southern Tibet[J]. Lithos, 2015, 227:94-106.

      [13]

      Cao H W, Huang Y, Li G M, et al. Late Triassic sedimentary records in the northern Tethyan Himalaya:tectonic link with Greater India[J]. Geoscience Frontiers, 2018, 9(1):273-291.

      [14]

      Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14.

      [15] 崔浩杰, 苟正彬, 刘函, 等. 拉萨地块西段尼雄地区早白垩世晚期花岗闪长岩的成因及构造意义[J]. 沉积与特提斯地质, 2019, 39(1):1-13.
      [16]

      Cao H-W, Zhang Y, Tang L, et al. Geochemistry, zircon U-Pb geochronology and Hf isotopes of Jurassic-Cretaceous granites in the Tengchong terrane, SW China:Implications for the Mesozoic tectono-magmatic evolution of the Eastern Tethyan Tectonic Domain[J]. International Geology Review, 2019, 61(3):257-279.

      [17]

      Cao H-W, Zhang Y-H, Santosh M, et al. Petrogenesis and metallogenic implications of Cretaceous magmatism in Central Lhasa, Tibetan plateau:a case study from the Lunggar Fe skarn deposit and perspective review[J]. Geological Journal, 2019, 54(4):2323-2346.

      [18]

      Hu X M, Garzanti E, Wang J G, et al. The timing of India-Asia collision onset-facts, theories, controversies[J]. Earth-Science Reviews, 2016, 160:264-299.

      [19]

      Hou Z Q, Zhang H R. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2015, 70:346-384.

      [20] 康朝龙, 代克刚, 李海波, 等. 西藏八宿吉利地区新发现寒武纪变质花岗岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 沉积与特提斯地质, 2019, 39(2):1-13.
      [21]

      Zhang Z, Li G M, Cao H W, et al. Miocene potassic and adakitic intrusions in eastern central Lhasa terrane, Tibet:Implications for origin and tectonic of postcollisional magmatism[J]. Geological Journal, 2020, 55(4):3036-3053.

      [22]

      Yang Z S, Hou Z Q, Meng X J, et al. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen[J]. Ore Geology Reviews, 2009, 36(1-3):194-212.

      [23]

      Jessup M J, Langille J M, Diedesch T F, et al. Gneiss Dome Formation in the Himalaya and southern Tibet[J]. Geological Society, London, Special Publications, 2019, 483:401-422.

      [24]

      Zhang L K, Li G M, Santosh M, et al. Cambrian magmatism in the Tethys Himalaya and implications for the evolution of the Proto-Tethys along the northern Gondwana margin:A case study and overview[J]. Geological Journal, 2019, 54(4):2545-2565.

      [25] 吴建阳, 李光明, 周清, 等. 藏南扎西康整装勘查区成矿体系初探[J]. 中国地质, 2015, 42(6):1674-1683.
      [26] 缪华清, 李光明, 张志, 等. 藏南柯月铅锌矿床成矿物质来源:来自硫、铅同位素的证据[J]. 沉积与特提斯地质, 2017, 37(2):14-22.
      [27]

      Cao H-W, Zou H, Bagas L, et al. The Laqiong Sb-Au deposit:Implications for polymetallic mineral systems in the Tethys-Himalayan zone of southern Tibet, China[J]. Gondwana Research, 2019, 72:83-96.

      [28] 张林奎, 张志, 李光明, 等. 特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因[J]. 地球科学, 2018, 43(8):2664-2683.
      [29] 李光明, 张林奎, 焦彦杰, 等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4):1003-1008.
      [30]

      Cao H-W, Li G-M, Zhang Z, et al. Miocene Sn polymetallic mineralization in the Tethyan Himalaya, southeastern Tibet:A case study of the Cuonadong deposit[J]. Ore Geology Reviews, 2020, 119:103403.

      [31] 梁维, 张林奎, 夏祥标, 等. 藏南地区错那洞钨锡多金属矿床地质特征及成因[J]. 地球科学, 2018, 43(8):2742-2754.
      [32]

      Hu Z, Zhang W, Liu Y, et al. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis[J]. Analytical Chemistry, 2015, 87(2):1152-1157.

      [33]

      Zong K, Chen J, Hu Z, et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China Earth Sciences, 2015, 58:1731-1740.

      [34]

      Liu Y, Hu Z, Zong K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546.

      [35]

      Ludwig K R. User's Manual for Isoplot 3.75:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center, 2012.

      [36]

      Aleinikoff J N, Schenck W S, Plank M O, et al. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware:Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite[J]. GSA Bulletin, 2006, 118(1-2):39-64.

      [37]

      Tomascak P B, Krogstad E J, Walker R J. U-Pb Monazite Geochronology of Granitic Rocks from Maine:Implications for Late Paleozoic Tectonics in the Northern Appalachians[J]. The Journal of Geology, 1996, 104(2):185-195.

      [38]

      Aikman A B, Harrison T M, Lin D. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet[J]. Earth and Planetary Science Letters, 2008, 274(1-2):14-23.

      [39] 戚学祥, 曾令森, 孟祥金, 等. 特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 2008, 24(7):1501-1508.
      [40]

      Hou Z Q, Zheng Y C, Zeng L S, et al. Eocene-Oligocene granitoids in southern Tibet:Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen[J]. Earth and Planetary Science Letters, 2012, 349-350:38-52.

      [41] 吴珍汉, 叶培盛, 吴中海, 等. 特提斯喜马拉雅构造带雅拉香波穹隆构造热事件LA-ICP-MS锆石U-Pb年龄证据[J]. 地质通报, 2014, 33(5):595-605.
      [42]

      Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303(3-4):251-266.

      [43]

      Tian L, Wang L, Zheng H, et al. Eocene magmatism from the Liemai intrusion in the Eastern Tethyan Himalayan Belt and tectonic implications[J]. Geological Magazine, 2018, 156(3):510-524.

      [44] 胡古月, 曾令森, 戚学祥, 等. 藏南特提斯喜马拉雅带始新世隆子-恰嘎次火山岩区:雅拉香波二云母花岗岩的高位岩浆体系[J]. 岩石学报, 2011, 27(11):3308-3318.
      [45]

      Zeng L S, Liu J, Gao L E, et al. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications[J]. Chinese Science Bulletin, 2009, 54(1):104-112.

      [46]

      Aikman A B, Harrison T M, Hermann J. Age and thermal history of Eo-and Neohimalayan granitoids, eastern Himalaya[J]. Journal of Asian Earth Sciences, 2012, 51:85-97.

      [47]

      Larson K P, Godin L, Davis W J, et al. Out-of-sequence deformation and expansion of the Himalayan orogenic wedge:Insight from the Changgo culmination, south central Tibet[J]. Tectonics, 2010, 29(4):TC4013.

      [48]

      Ding L, Paul K, Qiao W X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 2005, 24(3):TC3001.

      [49] 谢克家, 曾令森, 刘静, 等. 西藏南部晚始新世打拉埃达克质花岗岩及其构造动力学意义[J]. 岩石学报, 2010, 26(4):1016-1026.
      [50]

      Gao L E, Zeng L S, Xie K J. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet[J]. Chinese Science Bulletin, 2012, 57(6):639-650.

      [51]

      Ding H X, Zhang Z M, Dong X, et al. Early Eocene (c. 50 Ma) collision of the Indian and Asian continents:Constraints from the North Himalayan metamorphic rocks, southeastern Tibet[J]. Earth and Planetary Science Letters, 2016, 435:64-73.

      [52]

      Ur Rehman H. Geochronological enigma of the HP-UHP rocks in the Himalayan orogen[J]. Geological Society, London, Special Publications, 2018, 474:183-207.

      [53] 张泽明, 丁慧霞, 董昕, 等. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲[J]. 地球科学, 2019, 44(5):1602-1619.
      [54]

      Hodges K V. Tectonics of the Himalaya and southern Tibet from two perspectives[J]. Geological Society of America Bulletin, 2000, 112(3):324-350.

      [55]

      Kohn M J, Parkinson C D. Petrologic case for Eocene slab breakoff during the Indo-Asian collision[J]. Geology, 2002, 30(7):591-594.

      [56]

      Wilke F D H, O'Brien P J, Gerdes A, et al. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and40Ar/39Ar ages[J]. European Journal of Mineralogy, 2010, 22(5):703-719.

    计量
    • 文章访问数:  224
    • HTML全文浏览量:  2
    • PDF下载量:  175
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-02-02
    • 修回日期:  2020-05-03
    • 发布日期:  2020-06-29

    目录

      /

      返回文章
      返回