高级检索

    西藏中冈底斯带北部早白垩世构造属性:来自则弄群火山岩锆石U-Pb年龄及地球化学的制约

    张彤, 黄波, 罗改, 马昭雄, 黄永高, 王燚

    张彤, 黄波, 罗改, 马昭雄, 黄永高, 王燚. 西藏中冈底斯带北部早白垩世构造属性:来自则弄群火山岩锆石U-Pb年龄及地球化学的制约[J]. 沉积与特提斯地质, 2020, 40(2): 75-90. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0075-16
    引用本文: 张彤, 黄波, 罗改, 马昭雄, 黄永高, 王燚. 西藏中冈底斯带北部早白垩世构造属性:来自则弄群火山岩锆石U-Pb年龄及地球化学的制约[J]. 沉积与特提斯地质, 2020, 40(2): 75-90. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0075-16
    ZHANG Tong, HUANG Bo, LUO Gai, MA Zhaoxiong, HUANG Yonggao, WANG Yi. Tectonic attributes of the Northern part of the Middle Gangdise Belt in the Early Cretaceous: evidences of zircon U-Pb dating and lithogeochemistry of volcanic rocks from the Zenong Group[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(2): 75-90. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0075-16
    Citation: ZHANG Tong, HUANG Bo, LUO Gai, MA Zhaoxiong, HUANG Yonggao, WANG Yi. Tectonic attributes of the Northern part of the Middle Gangdise Belt in the Early Cretaceous: evidences of zircon U-Pb dating and lithogeochemistry of volcanic rocks from the Zenong Group[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(2): 75-90. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0075-16

    西藏中冈底斯带北部早白垩世构造属性:来自则弄群火山岩锆石U-Pb年龄及地球化学的制约

    基金项目: 

    中国地质调查局项目(DD20160015)

    详细信息
      作者简介:

      张彤(1986-),男,硕士,构造地质学专业,主要从事区域地质调查工作。E-mail:986573254@qq.com

    • 中图分类号: P588.14

    Tectonic attributes of the Northern part of the Middle Gangdise Belt in the Early Cretaceous: evidences of zircon U-Pb dating and lithogeochemistry of volcanic rocks from the Zenong Group

    • 摘要: 中冈底斯带广泛分布则弄群火山岩,其成因机制一直存在争议。本文对出露于来多地区的则弄群火山岩进行了锆石U-Pb定年及全岩地球化学分析,旨在精确限其形成时代,探讨其成因机制。结果表明,来多地区的则弄群火山岩形成于124.0~114.7Ma之间;岩石SiO2含量在54.53%~78.35%之间,铝饱和指数A/CNK为0.77~3.75,属偏铝质-过铝质岩石,轻稀土富集,负Eu异常明显,相对富集Rb、Th、U等大离子亲石元素,亏损Nb、Ta等高场强元素,岩石具有弧火山岩的特征。综合分析认为,则弄群火山岩可能为班公湖-怒江缝合带南侧的狮泉河-永珠-纳木错-嘉黎蛇绿岩带所代表的Slainajap洋在早白垩世向南俯冲消减的产物。
      Abstract: The genesis of the widely distributed volcanic rocks of the Zenong Group in the Middle Gangdise Belt, Tibet, has been controversial. By carrying out zircon U-Pb dating of the volcanic rocks from the Zenong Group in Laiduo are, the authors believe that the volcanic rocks of the Zenong Group were formed during 124.0~114.7Ma.The geochemical analyses of volcanic rocks from the Zenong Group show that their SiO2 contents range from 54.53% to 78.35%,and the aluminum saturation index A/CNK is between 0.77 and 3.75, suggesting the volcanic rocks of the Zenong Group belong to the aluminum-peraluminous rocks, enriching in LREEs and LILEs such as Rb、Ba、Th and U, depleting in HFS elements such as Nb and Ta, and with an obvious negative anomaly of Eu. Evidences of the both Zircon U-Pb dating and lithogeochemisty indicate that the Zenong Group may be the product of the southward subduction of the Slainajap ocean which is now in the form of Shiquanhe-Yongzhu-Namucuo-Jiali ophiolite belt during the Early Cretaceous.
    • [1] 潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报,2006,22(3):521-533.
      [2] 朱弟成,潘桂棠,莫宣学,等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报,2006,22(3):534-546.
      [3] 康志强,许继峰,董彦辉,等.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物[J].岩石学报,2008,24(2):303-314.
      [4] 朱弟成,莫宣学,赵志丹,等.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J].岩石学报,2008,24(3):401-412.
      [5] 丁慧霞,张泽明,向华等.青藏高原拉萨地体北部早白垩世火山岩的成因及意义[J].岩石学报,2015,31(5):1247-1267.
      [6] 王力圆,郑有业,高顺宝,等.中部拉萨地体南侧吉瓦地区早白垩世则弄群火山岩的发现及意义[J].岩石学报,2016,32(5):1543-1555.
      [7] 周华,邱检生,喻思斌,等.西藏措勤地区火山岩的年代学与地球化学及其对岩石成因的制约[J].地质学报,2016,90(11):3173-3191.
      [8] 苟正彬,刘函,李俊,等.拉萨地块中北部尼雄地区早白垩世火山岩的成因及构造意义[J].地球科学,2018,43(8):2780-2794.
      [9] 马国林,岳雅慧.西藏拉萨地块北部白垩纪火山岩及其对冈底斯岛弧构造演化的制约[J].岩石矿物学杂志,2010,29(7):525-538.
      [10] 叶春林,黄柏鑫,王燚,等.西藏中冈底斯扎布耶茶卡北部晚侏罗世则弄群火山岩的锆石U-Pb年代学及其成因意义[J].高校地质学报,2018,24(4):525-535.
      [11] 刘伟,李奋其,袁四化,等.西藏措勤地区则弄群火山岩源区-地球化学及Sr-Nd同位素制约[J].岩石矿物学杂志,2010,29(4):367-376.
      [12] 刘伟,李奋其,袁四化,等.西藏中冈底斯带措勤地区则弄群熔结凝灰岩锆石LA-ICP-MSU-Pb年龄[J].地质通报,2010,29(7):1009-1016.
      [13] 肖志坚,廖思平,黄传冠,等.西藏当惹雍错晚侏罗世-早白垩世扎列拿组、郎穷组和荣纳组的建立[J].地质通报,2003,22(11-12):970-976.
      [14] 孙赛军,张丽鹏,丁兴,等.西藏那曲中酸性火山岩的锆石U-Pb年龄、Hf同位素和地球化学特征及岩石成因[J].岩石学报,2015,31(7):2063-2077.
      [15] 李奋其,刘伟,耿全如.西藏冈底斯带那曲地区中生代火山岩的LA-ICP-MS锆石U-Pb年龄和地质意义[J].地球学报,2010,31(7):781-790.
      [16] 彭智敏,耿全如,张璋,等.西藏那曲地区流纹岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].地质通报,2011,30(7):1050-1059.
      [17] 康志强,许继峰,王保弟,等.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境[J].地球科学-中国地质大学学报,2009,34(1):93-108.
      [18] 朱弟成,莫宣学,王立全,等.新特提斯新特提斯演化的热点与洋脊相互作用:西藏南部晚侏罗世-早白垩世岩浆作用推论[J].岩石学报,2008,24(2):225-237.
      [19] 黄丰,许继峰,陈建林,等.早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧[J].岩石学报,2015,31(7):2089-2100.
      [20] 郑有业,许荣科,马国桃,等.锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束[J].岩石学报,2006,22(4):0895-0904.
      [21] 王保弟,许继峰,曾庆高,等.西藏改则地区拉果错蛇绿岩地球化学特征及成因[J].岩石学报,2007,23(6):1521-1530.
      [22] 郑有业,许荣科,何来信,等.西藏狮泉河蛇绿混杂岩带-一个新的多岛弧盆系统的厘定及意义[J].沉积与特提斯地质,2004,24(1):13-20.
      [23] 叶培盛,吴珍汉,胡道功,等.西藏永珠-果芒错蛇绿岩的地球化学特征及其构造意义[J].现代地质,2005,19(4):508-514.
      [24] 王振,叶培盛,张绪教,等.藏北果芒错蛇绿岩中堆晶岩地球化学特征及其地质意义[J].现代地质,2017,370,31(3):486-497.
      [25] 樊帅权,史仁灯,丁林,等.西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U-Pb年龄及构造意义[J].矿物岩石学杂志,2010,29(5):467-478.
      [26] 徐梦婧,李才,吴彦旺,等.西藏果芒错蛇绿混杂岩中硅质岩的地球化学特征及其形成环境[J].地质通报,2014,33(7):1061-1066.
      [27] 曾孝文,王明,范建军,等.西藏高原中部阿索蛇绿岩岩石学与同位素年龄[J].地质通报,2018,37(8):1492-1502.
      [28] 莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报,2005,11(3):281-290.
      [29] 刘珂辛,张勇强,雷波.西藏则弄群火山岩特征及其俯冲极性判断[J].矿产地质,2014,33(z):111-112.
      [30] 王立全,潘桂棠,丁俊,等.青藏高原及邻区地质图说明书(1:1500000)[M].北京:地质出版社,2014.
      [31]

      Le Maitre R W. Igneous Rocks:A Classification and Glossary of Terms,2nd ed[M]. Cambridge:Cambridge Univ. Press.236.

      [32]

      Irvine TN and Baragar WRA.A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences,1971,8:523-548.

      [33]

      Peccerillo R.,Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J]. Contrib. Mineral Petrol,1976,58:63~81.

      [34]

      Rudnic R L,Gao S.Composition of the continental crust[C]//Rudnick R L.The Crust:Treaties on Geochemistry.Oxford Elsevier-Pergamon,2003:1-64.

      [35]

      Sun S S and McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society London Special Publications,1989,42(1):313-345.

      [36]

      Boynton W V. Geochemistry of the rare earth elements:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elsevier,1984:63-114.

      [37]

      Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,1984,25:956-983.

      [38]

      Yin A,Harrison T M.Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28(1):211-280.

      [39]

      Zhu D C,Zhao Z D,Niu Y L,et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters,2011,301:241-255.

      [40]

      Gutscher M A,Maury R and Eissen J P.Can slab melting be caused by flat subduction[J]? Geology,28(6):535-538.

      [41]

      Murphy M A,Yin A,Harrison T M,et al.Did the Indo-Asian collision alone create the Tibetan plateau[J]? Geology,1997,(8):719-722.

      [42]

      Tapponnier P,Xu Z Q,Roger F,et al.Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,2001,23:1671-1677.

      [43]

      Girardeau J,Marcoux J,Allegre C J,et al.Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite,Bangong-Nujiang suture zone,Tibet[J].Nature,1984,307(5946):27-31.

      [44]

      Coward,M.P,Kidd,W.S.F.,Yun,P,et al. The Structure of the 1985 Tibet Geotraverse,Lhasa to Golmud. Philosophical Transactions of the Royal Society of London[J]. Series A,Mathematical and Physical Sciences,1988,327(1594):307-333.

      [45]

      Kapp P,Murphy M.A,Yin A,et al.Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J].Tectonics,2003,22(4):1029.

      [46]

      Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology,2000,18:423-439.

      [47]

      Ludwig K R. Isoplot/Ex version 3.00. A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center Special Publication.2003,4:1-70.

      [48]

      Brenan J M,Shaw H F,Ryerson F J and Phinney D L. Mineral-aqueous fluid partitioning of trace elements at 900℃and 2.0 GPa:constraints on the trace element chemistry of mantle and deep crustal fluids[J]. Geochimica et Cosmochimica Acta,1995,59:3331-3350.

      [49]

      Kogiso T,Tatsumi Y and Nakano S. Trace element transport during dehydration processes in the subduction oceanic crust:Experiments and implications for the origin of ocean island basalts[J]. Earth and Planetary Science Letters,1997,148:193-205.

      [50]

      You C F,Castillo P R,Gieskes J M,Chan L H and Spivack A J. Trace element behavior in hydrothermal experments:Implications for fliud processes at shallow depths in subduction zones[J]. Earth and Planetary Science Letters,1996,140:41-52.

      [51]

      Defant M J and Drummond M S. Derivation of same modern arc magmas by melting of young subducted lithosphere[J]. Nature,1990,347:662-665.

      [52]

      Coulon C,Maluski H,Bollinger C,et al.Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating,petrological characteristics and geodynamical significance[J]. Earthand Planetary Science Letters,1986,79(3):281-302.

      [53]

      Guo L,Liu Y,Liu S,et al.Petrogenesis of early to middle Jurassic granitoid rocks from the Gangdese belt,southern Tibet:Implications for early history of the Neo-Tethys[J]. Lithos,2013,179(5):320-333.

      [54]

      Zhang K J,Zhang Y X,Tang X C,et al.Late Mesozoic tectonic evolution and growth of the tibetan plateau prior to the indo-asian collision[J]. Earth-Science Reviews,2012,114(3-4):236-249.

    计量
    • 文章访问数:  160
    • HTML全文浏览量:  4
    • PDF下载量:  159
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-15
    • 修回日期:  2020-05-18

    目录

      /

      返回文章
      返回