Identification and its significances of the Lalong Be-Nb-Ta-bearing albite granite in the Northern Himalaya, Tibet
-
摘要: 拉隆穹隆出露于西藏北喜马拉雅带的东段,位于康马穹隆和错那洞穹隆之间。通过1∶5万矿产地质填图和精细剖面测量,在拉隆穹隆核部和围绕穹隆核部呈环状发育的滑脱系中发现一套含Be、Nb、Ta等稀有金属的钠长石花岗岩。拉隆花岗岩由内向外呈现出规律性的岩性变化,依次为二云母花岗岩、白云母花岗岩、伟晶质花岗岩、钠长石花岗岩、伟晶岩及石英壳,表明其是一套岩浆分异程度极高的花岗岩。岩相学研究显示,拉隆钠长石花岗岩的矿物成分以钠长石、石英、钾长石和白云母为主,含少量石榴石,可见少量绿柱石和铌钽族矿物。岩石化学分析表明,该钠长石花岗岩以富含Be、Nb、Ta、Li、Rb、Cs等稀有金属元素及富含H2O、P、F和B等挥发分为典型特征,其中稀有金属Be、Nb、Ta的含量均已达到工业品位,构成了Be-Nb-Ta稀有金属矿体。本文对拉隆穹隆核部的钠长石花岗岩进行独居石U-Pb测年分析,获得21.3 Ma的独居石结晶年龄,与区域上的淡色花岗岩的侵位年龄基本一致。拉隆含Be-Nb-Ta稀有金属钠长石花岗岩的发现,丰富了北喜马拉雅带稀有金属成矿作用类型,对在北喜马拉雅地区寻找钠长石花岗岩型Be-Nb-Ta稀有金属矿具有重要意义。
-
关键词:
- 独居石 /
- Be-Nb-Ta稀有金属 /
- 钠长石花岗岩 /
- 拉隆穹隆 /
- 北喜马拉雅
Abstract: The Lalong dome is one of the North Himalayan Gneiss Domes (NHGD), located between the well-studied Kangmar dome and the Cuonadong dome. On the basis of 1:50,000 geological survey for minerals, 1:10,000 geological mapping, detailed measured profiles and monazite U-Pb dating, a set of Be-Nb-Ta-bearing rare metal albite granite was first discovered and identified in the Lalong dome. The Lalong Be-Nb-Ta-bearing albite granite shows continuous zonings of granitic magma evolution. From inside out, two mica granite, white mica granite, pegmatitic granite, albite granite, and pegmatite were observed. The albite granite is characterized by high contents of Be, Nb, Ta, Li, Rb and Cs, and it is also rich in volatiles such as H2O, P, F and B. A 21.3 Ma age was obtained by U-Pb dating for the monazite in the albite granite, which represented the crystallizing ager of the Lalong Be-Nb-Ta-bearing albite granite, implying an extensively magmatic activity in the northern Himalaya at that time. The identification of the Be-Nb-Ta rare metal albite granite in the Lalong dome not only opened an important prospecting prelude of albite granite type Be-Nb-Ta rare metal deposits, but vastly enriched metallogenic types of rare metals in the northern Himalaya.-
Keywords:
- monazite /
- Be-Nb-Ta rare metal /
- albite granite /
- Lalong dome /
- Northern Himalaya
-
-
[1] 曾令森, 陈晶, 高利娥, 陈振宇. 藏南北喜马拉雅穹窿高Sr/Y二云母花岗岩中磷灰石地球化学特征及其岩石学意义.岩石学报[J],2012, 28(9):2981-2993. [2] 吴福元, 刘志超, 刘小驰, 纪伟强. 喜马拉雅淡色花岗岩[J].岩石学报,2015:1-36. [3] Liu, Z.-C., Wu, F.-Y., Ji, W.-Q., Wang, J.-G., Liu, C.-Z. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model[J].Lithos,2014, 208-209-118-136.
[4] Quigley, M. C., Liangjun, Y., Gregory, C., Corvino, A., Sandiford, M., Wilson, C. J. L., Xiaohan, L. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet[J].Tectonophysics,2008, 446(1-4):97-113.
[5] Watts, D. R., Harris, N. B. W., Group, T. N. G. S. W. Mapping granite and gneiss in domes along the North Himalayan antiform with ASTER SWIR band ratios[J].Geological Society of America Bulletin,2005, 117(7-8):879-886.
[6] Zhang, J., Santosh, M., Wang, X., Guo, L., Yang, X., Zhang, B. Tectonics of the northern Himalaya since the India-Asia collision[J].Gondwana Research,2012, 21(4):939-960.
[7] Fu, J., Li, G., Wang, G., Zhang, L., Liang, W., Zhang, Z., Zhang, X., Huang, Y. Synchronous granite intrusion and E-W extension in the Cuonadong dome, southern Tibet, China:evidence from field observations and thermochronologic results[J].International Journal of Earth Sciences,2018, 107;2023-2041.
[8] Mitsuishi, M., Wallis, S. R., Aoya, M., Lee, J., Wang, Y. E-W extension at 19 Ma in the Kung Co area, S. Tibet:Evidence for contemporaneous E-W and N-S extension in the Himalayan orogen[J].Earth and Planetary Science Letters,2012, 325-326(0):10-20.
[9] 刘焰, Siebel W, 李剑, 肖序常. 藏南定日地区主中央冲断层与藏南拆离系的特征及其活动时代[J].地质通报,2004,23(07):636-644. [10] 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 高分异花岗岩的识别与研究[J].中国科学:地球科学,2017, 47(7):745-765. [11] 高利娥, 曾令森, 王莉, 侯可军, 郭春丽, 唐索寒. 藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制[J].岩石学报,2013, 29(06):1995-2012. [12] 王晓先, 张进江, 刘江, 闫淑玉, 王佳敏. 中新世中期喜马拉雅造山带构造体制的转换[J].科学通报,2012:3162-3172. [13] 张进江, 郭磊, 张波. 北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征[J].地质科学,2007, 42(01):16-30. [14] 张进江, 杨雄英, 戚国伟, 王德朝. 马拉山穹窿的活动时限及其在藏南拆离系-北喜马拉雅片麻岩穹窿形成机制的应用[J].岩石学报,2011, 27(12):3535-3544. [15] Fu, J., Li, G., Wang, G., Zhang, L., Liang, W., Zhang, X., Jiao, Y., Dong, S., Huang, Y. Structural analysis of sheath folds and geochronology in the Cuonadong Dome, southern Tibet, China:New constraints on the timing of the South Tibetan Detachment System and its relationship to North Himalayan Gneiss Domes[J].Terra Nova,2020.
[16] Lee, J., Hacker, B., Wang, Y. Evolution of North Himalayan gneiss domes:structural and metamorphic studies in Mabja Dome, southern Tibet[J].Journal of Structural Geology,2004, 26(12):2297-2316.
[17] Lee, J., Hacker, B. R., Dinklage, W. S., Wang, Y., Gans, P., Calvert, A., Wan, J., Chen, W., Blythe, A. E., McClelland, W. Evolution of the Kangmar Dome, southern Tibet:Structural, petrologic, and thermochronologic constraints[J].Tectonics,2000, 19(5):872-895.
[18] Lee, J., McClelland, W., Wang, Y., Blythe, A., McWilliams, M. Oligocene-Miocene middle crustal flow in southern Tibet:geochronology of Mabja Dome[J].Geological Society, London, Special Publications,2006, 268(1):445-469.
[19] Lee, J., Whitehouse, M. J. Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages[J].Geology,2007, 35(1):45-48.
[20] 王汝成, 吴福元, 谢磊, 刘小池, 王佳敏, 杨雷, 赖文, 刘晨. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J].中国科学:地球科学,2017, 47(08):871-880. [21] 付建刚, 李光明, 王根厚, 张林奎, 梁维, 张小琼, 焦彦杰, 董随亮. 西藏错那洞穹隆同构造矽卡岩特征及相关铍钨锡稀有金属矿化的成矿时代[J].吉林大学学报(地球科学版),2020:In press. [22] 李光明, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳, 董磊, 黄勇. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J].矿床地质,2017, 36(4):1003-1008. [23] Wu, F.-Y., Liu, X.-C., Liu, Z.-C., Wang, R.-C., Xie, L., Wang, J.-M., Ji, W.-Q., Yang, L., Liu, C., Khanal, G. P., He, S.-X. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J].Lithos,2020, 352-353(105319.
[24] 梁维, 张林奎, 夏祥标, 马国桃, 黄勇, 张志, 付建刚, 曹华文, 缪华清, 李光明. 藏南地区错那洞钨锡多金属矿床地质特征及成因[J].地球科学,2018, 43(8):2742-2754. [25] Burg, J. P., Chen, G. M. Tectonics and structural zonation of southern Tibet, China[J].Nature,1984, 311(5983):219-223.
[26] Thiede, R. C., Arrowsmith, J. R., Bookhagen, B., McWilliams, M., Sobel, E. R., Strecker, M. R. Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India.Geological Society of America Bulletin,2006, 118(5-6):635-650.
[27] Burg, J. P., Guiraud, M., Chen, G. M., Li, G. C. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China)[J].Earth and Planetary Science Letters,1984, 69(2):391-400.
[28] Chen, Z., Liu, Y., Hodges, K. V., Burchfiel, B. C., Royden, L. H., Deng, C. The Kangmar Dome:A Metamorphic Core Complex in Southern Xizang (Tibet)[J].Science,1990, 250(4987):1552-1556.
[29] Aoya, M., Wallis, S. R., Terada, K., Lee, J., Kawakami, T., Wang, Y., Heizler, M. North-south extension in the Tibetan crust triggered by granite emplacement[J].Geology,2005, 33(11):853-856.
[30] King, J., Harris, N., Argles, T., Parrish, R., Zhang, H. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet[J].Geological Society of America Bulletin,2011, 123(1-2):218-239.
[31] Liu, Z.-C., Wu, F.-Y., Ding, L., Liu, X.-C., Wang, J.-G., Ji, W.-Q. Highly fractionated Late Eocene (~35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet[J].Lithos,2016, 240-243(337-354.
[32] Liu, X.-C., Wu, F.-Y., Yu, L.-J., Liu, Z.-C., Ji, W.-Q., Wang, J.-G. Emplacement age of leucogranite in the Kampa Dome, southern Tibet[J].Tectonophysics,2016, 667(163-175.
[33] 王晓先, 张进江, 闫淑玉, 刘江. 藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义[J].地质通报,2016, 35(01):91-103. [34] Fu, J., Li, G., Wang, G., Huang, Y., Zhang, L., Dong, S., Liang, W. First field identification of the Cuonadong dome in southern Tibet:implications for EW extension of the North Himalayan gneiss dome[J].International Journal of Earth Sciences,2017, 106(5):1581-1596.
[35] Jackson, S. E., Pearson, N. J., Griffin, W. L., Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology,2004, 211(1):47-69.
[36] Cooper, F. J., Hodges, K. V., Parrish, R. R., Roberts, N. M. W., Horstwood, M. S. A. Synchronous N-S and E-W extension at the Tibet-to-Himalaya transition in NW Bhutan[J].Tectonics,2015, 34(7):1375-1395.
[37] 吴珍汉, 叶培盛, 吴中海, 赵珍. 特提斯喜马拉雅构造带雅拉香波穹隆构造热事件LA-ICP-MS锆石U-Pb年龄证据[J].地质通报,2014,33(05):595-605. [38] 付建刚, 李光明, 王根厚, 张林奎, 梁维, 张志, 董随亮, 黄勇. 北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹隆Ar-Ar年代学证据[J].地球科学,2018, 43(8):2638-2650. [39] Schultz, M. H., Hodges, K. V., Ehlers, T. A., van Soest, M., Wartho, J.-A. Thermochronologic constraints on the slip history of the South Tibetan detachment system in the Everest region, southern Tibet[J].Earth and Planetary Science Letters,2017, 459(Supplement C):105-117.
[40] Quigley, M., Liangjun, Y., Xiaohan, L., Wilson, C. J. L., Sandiford, M., Phillips, D. 40Ar/39Ar thermochronology of the Kampa Dome, southern Tibet:Implications for tectonic evolution of the North Himalayan gneiss domes[J].Tectonophysics,2006, 421(3-4):269-297.
[41] 郭磊, 张进江, 张波. 北喜马拉雅然巴穹隆的构造、运动学特征、年代学及演化[J].自然科学进展,2008, 18(06):640-650. [42] 王晓先, 张进江, 杨雄英, 张波. 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义[J].地学前缘,2011, 02):127-139. [43] 于俊杰, 曾令森, 刘静, 高利娥, 谢克家. 藏南定结地区早中新世淡色花岗岩的形成机制及其构造动力学意义[J].岩石学报,2011,27(07):1961-1972. [44] 张金阳, 廖群安, 李德威. 西藏定结地区高喜马拉雅淡色花岗岩的地球化学特征与岩浆源区研究[J].地质科技情报,2003, 03):9-14. [45] 黄春梅, 赵志丹, 朱弟成, 刘栋, 黄玉, 董铭淳, 胡兆初, 郑建平. 藏南洛扎地区淡色花岗岩锆石U-Pb年龄、Hf同位素、地球化学与岩石成因[J].岩石学报,2013, 29(11):3689-3702. [46] 朱金初, 饶冰, 熊小林, 李福春, 张佩华. 富锂氟含稀有矿化花岗质岩石的对比和成因思考[J].地球化学,2002, 31(2):141-152. [47] 朱金初, 王汝成, 陆建军, 张晖, 张文兰, 谢磊, 章荣清. 湘南癞子岭花岗岩体分异演化和成岩成矿[J].高校地质学报,2011, 17(3):381-392. [48] 朱金初, 吴长年, 刘昌实, 李福春, 黄小龙, 周东山. 新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液演化和成因[J].高校地质学报,2000, 6(1):40-52. [49] 唐宏, 张晖. 可可托海3 号伟晶岩脉石英中微量元素组成特征与岩浆-热液演化[J].矿物学报,2018, 38(1):15-24. [50] 周起凤, 秦克章, 唐冬梅, 丁建刚, 郭正林. 阿尔泰可可托海3 号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J].岩石学报,2013, 29(9):3004-3022. [51] Abdalla, H. M., Helba, H. A., Mohamed, F. H. Chemistry of columbite-tantalite minerals in rare metal granitoids, Eastern Desert, Egypt[J].Mineralogical Magazine,2018, 62(6):821-836.
[52] Raimbault, L., Cuney, M., Azencott, C., Duthou, J.-L., Joron, J. L. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central[J].Economic Geology,1995, 90(3):548-576.
[53] Pollard, P. J., Nakapadungrat, S., Taylor, R. G. The Phuket Supersuite, Southwest Thailand; fractionated I-type granites associated with tin-tantalum mineralization[J].Economic Geology,1995, 90(3):586-602.
[54] Suwimonprecha, P., Cerny, P., Friedrich, G. Rare metal mineralization related to granites and pegmatites, Phuket, Thailand[J].Economic Geology,1995, 90(3):603-615.
[55] Sanematsu, K., Kon, Y., Imai, A., Watanabe, K., Watanabe, Y. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand[J].Mineralium Deposita,2013, 48(4):437-451.
[56] Breiter, K., Škoda, R., Uher, P. Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution:Podlesí, Czech Republic[J].Mineralogy and Petrology,2007, 91(3):225-248.
[57] Llorens, T., Moro, M. C. Oxide minerals in the granitic cupola of the Jalama Batholith, Salamanca, Spain. Part I:accessory Sn, Nb, Ta and Ti minerals in leucogranites, aplites and pegmatites[J].Journal of Geosciences,2012, 57(1):25-43.
[58] Llorens, T., Moro, M. C. Oxide minerals in the granitic cupola of the Jalama Batholith, Salamanca, Spain. Part II:Sn, W and Ti minerals in intra-granitic quartz veins[J].Journal of Geosciences,2012, 57(3):155-171.
计量
- 文章访问数: 355
- HTML全文浏览量: 1
- PDF下载量: 184