In situ trace-element and Sr isotopic characteristics of scheelite and their implications for the genesis in the Nuri Cu-W-Mo deposit, Xizang
-
摘要:
西藏努日Cu-W-Mo矿床是目前冈底斯成矿带上发现的唯一具有Cu-W-Mo矿化组合的大型矿床。然而,自该矿床上世纪发现以来,关于其成因类型,一直存在较大的争议。本次研究根据矿床地质特征对矿床成矿阶段进行了精确的划分,并以氧化物阶段和石英–硫化物阶段的白钨矿(Sch–A和Sch–B)为研究对象,通过LA-ICP-MS微量元素和Sr同位素测试分析,对矿床成矿流体来源、演化过程及成因进行深入探讨。扫描电镜–阴极发光(SEM-CL)图像显示,白钨矿Sch–A具有两个世代,暗色均质Sch–A1被浅色均质Sch–A2不规则交代;而白钨矿Sch–B具有“核–边”结构,核部Sch–B1呈深灰色、具有均匀生长环带,边部为浅灰色、均质的Sch–B2。白钨矿Sch–A的稀土元素球粒陨石标准化分布特征和Sr同位素数据指示,成矿流体早期来源于花岗闪长斑岩,后期因强烈的水–岩反应而有围岩物质混入,而成矿流体与围岩发生的强烈水–岩反应也是白钨矿大量沉淀的重要机制。其高Mo和低Sr含量的特征,也符合岩浆–热液型矿床中白钨矿的特点。因此,综合努日矿床地质特征,白钨矿微量元素、Sr同位素地球化学特征及其对成矿流体来源、演化过程及矿床成因的指示,认为努日矿床属于斑岩–夕卡岩型矿床。
Abstract:The Nuri deposit in Xizang is currently the only large deposit with Cu-W-Mo mineralization discovered in the Gangdese metallogenic belt. However, since its discovery in the last century, its genetic type has been highly controversial. Based on geological features, this study precisely classifies the metallogenic stages of the deposit. As study objects, two types of scheelite (hereinafter referred to as Sch–A and Sch–B) in the oxide stage and quartz-sulfide stage are analyzed to investigate the origins of the metallogenic fluids, the deposit's evolutionary process, and its genesis utilizing Sr isotope and LA-ICP-MS trace element analyses. Scanning electron microscopy-cathodoluminescence (SEM-CL) reveals that Sch–A has two generations, with dark homogeneous Sch–A1 being irregularly replaced by light homogeneous Sch–A2; while Sch–B has a "core-edge" structure, with Sch–B1 possessing dark gray uniform growth rings in the core and light gray homogeneous Sch–B2 in the edge. The distribution pattern of rare earth elements standardized by chondrite in Sch–A and Sr isotope data indicate that the ore-forming fluid originated from granodiorite porphyry in the early stage, and in the late stage, mixed with surrounding rock materials due to strong water-rock interactions, which is a key mechanism for the massive precipitation of scheelite. The scheelite in this study has high Mo and low Sr contents, which is consistent with the characteristics of magmatic-hydrothermal scheelite. Therefore, combining the trace-element and Sr isotope geochemical characteristics exhibited by Nuri scheelite in this study and the indications of the source of ore-forming fluid, the evolutionary process, and the genesis of the deposit, all of these indicate that the Nuri deposit belongs to the porphyry-skarn type deposit.
-
1 *数据资料请联系编辑部或登录期刊官网https://www.cjyttsdz.com.cn/获取。 -
图 1 青藏高原及冈底斯构造简图(a、b)和努日地区地质简图(c)(转引自代作文等,2018)
JSSZ—金沙江缝合带;BNSZ—班公湖–怒江缝合带;YZSZ—雅鲁藏布缝合带;SNMZ—狮泉河–纳木错蛇绿混杂岩带;GLCF—噶尔–隆格尔–措麦断裂带;LMF—洛巴堆–米拉山断裂带;NG—北冈底斯;MG—中冈底斯;GRUB—冈底斯弧背断隆带;SG—南冈底斯
Figure 1. Tectonic sketch of the Gangdese and Qingzang (Tibet) Plateau (a,b) and geological map of the Nuri deposit (c) (after Dai et al., 2018)
图 2 西藏努日矿床地质简图(据王勤等,2018)
Figure 2. Geological sketch map of the Nuri deposit, Xizang (after Wang et al., 2018)
图 3 努日矿床中典型手标本照片及显微照片
a. 氧化物阶段,含白钨矿透辉石石榴石夕卡岩矿石,其中穿插有石英–方解石阶段的石英+方解石细脉;b. 紫色荧光灯下,白钨矿Sch–A呈淡黄色荧光;c. 矿相显微镜下,白钨矿交代石榴石、绿帘石,呈浸染状产出;d. SEM-CL影像显示,白钨矿Sch–A具有两个世代;e. 石英–硫化物阶段,石英–白钨矿–黄铁矿–黄铜矿–辉钼矿脉穿插于花岗闪长斑岩中;f. 紫色荧光灯下,白钨矿Sch–B呈天蓝色荧光;g. 矿相显微镜下,白钨矿Sch–B交代黄铁矿,被辉钼矿、黄铜矿交代;h. SEM-CL影像显示,白钨矿Sch–B具有两个世代
Figure 3. Hand-specimen photographs and photomicrographs showing representative examples of the Nuri deposit
图 4 努日Cu-W-Mo矿床白钨矿球粒陨石标准化稀土元素配分模式图(球粒陨石标准化值据Sun and McDonough, 1989)
图中花岗闪长斑岩的稀土元素组成来自Chen et al.(2015)、王勤等(2018)和Wu et al.(2018)
Figure 4. Patterns of chondrite-normalized rare earth elements for the Nuri Cu-W-Mo deposit scheelite (normalizing values of chondrite according to Sun and McDonough, 1989)
图 8 努日Cu-W-Mo矿床中白钨矿的Sr/Mo–δEu图解(底图据Poulin et al.,2018)
Figure 8. Sr/Mo–δEu diagram of scheelite from the Nuri Cu-W-Mo deposit (base map after Poulin et al., 2018)
图 9 努日Cu-W-Mo矿床和与斑岩有关的夕卡岩型W矿床以及石英脉型W矿床中白钨矿的Mo含量对比
数据来源于百丈崖和鸡头山(Song et al., 2014),Myanmar(Guo et al., 2016),大坪(熊德信等,2006),杨金沟任云生等,2010),Canada(Dostal et al., 2009)
Figure 9. Comparison of Mo contents in scheelite from the Nuri Cu-W-Mo deposit and other porphyry-related skarn W deposits and vein W deposits.
表 1 努日矿床成矿期次及矿物生成顺序表
Table 1 Mineralization stages and mineral generation sequence of Nuri deposit
-
[1] Brugger J,Bettiol A A,Costa S,et al.,2000. Mapping REE distribution in scheelite using luminescence[J]. Mineralogical Magazine,64(5):891 − 903. DOI: 10.1180/002646100549724
[2] Brugger J,Maas R,Lahaye Y,et al.,2002. Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archaean gold deposits,Western Australia[J]. Chemical Geology,182(2-4):203 − 225. DOI: 10.1016/S0009-2541(01)00290-X
[3] Burt D M,1989. Compositional and phase relations among rare earth element minerals[J]. Reviews in Mineralogy and Geochemistry,21(1):259 − 307.
[4] 陈光远,1987. 成因与找矿矿物学[M]. 重庆:重庆出版社:407 − 461. Chen G Y,1987. Genetic mineralogy and prospecting mineralogy[M]. Chongqing:Chongqing Press (in Chinese with English abstract).
[5] Chen L,Qin K Z,Li G M,et al.,2015. Zircon U–Pb ages,geochemistry,and Sr–Nd–Pb–Hf isotopes of the Nuri intrusive rocks in the Gangdese area,southern Tibet:Constraints on timing,petrogenesis,and tectonic transformation[J]. Lithos,212-215:379 − 396. DOI: 10.1016/j.lithos.2014.11.014
[6] Chen L,Qin K Z,Li J X,et al.,2012. Fluid inclusions and hydrogen,oxygen,sulfur isotopes of Nuri Cu-W-Mo deposit in the southern Gangdese,Tibet[J]. Resource Geology,62(1):42 − 62. DOI: 10.1111/j.1751-3928.2011.00179.x
[7] 陈雷,秦克章,李光明,等,2011. 西藏山南努日铜钼钨矿床矽卡岩地球化学特征及成因[J]. 地质与勘探,47(1):78 − 88. Chen L,Qin K Z,Li G M,et al.,2011. Geochemical characteristics and origin of skarn rocks in the Nuri Cu-Mo-W deposit,southern Tibet[J]. Geology and Exploration,47(1):78 − 88 (in Chinese with English abstract).
[8] 陈伟,2013. 西藏甲玛、努日铜多金属矿床矽卡岩矿物学特征对比研究[D]. 成都:成都理工大学. Chen W,2013. The comparative study of skarn Mineralogical characteristics in the Jiama and Nuri copper-polymetallic deposit,Tibet[D]. Chengdu:Chengdu University of Technology (in Chinese with English abstract).
[9] Dai Z W,Li G M,Xie Y L,et al.,2022. Source and evolution of the ore-forming fluid of the Cuonadong Sn-W-Be polymetallic deposit (southern Tibet,China):Constraints from scheelite trace element and Sr isotope geochemistry[J]. Ore Geology Reviews,142:104570. DOI: 10.1016/j.oregeorev.2021.104570
[10] 代作文,李光明,丁俊,等,2018. 西藏努日晚白垩世埃达克岩:洋脊俯冲的产物[J]. 地球科学,43(8):2727 − 2741. Dai Z W,Li G M,Ding J,et al.,2018. Late Cretaceous adakite in Nuri area,Tibet:Products of ridge subduction[J]. Earth Science,43(8):2727 − 2741 (in Chinese with English abstract).
[11] 董涛,杜斌,段召艳,等,2022. 滇西北香格里拉地区钨矿成矿规律及找矿方向[J]. 沉积与特提斯地质,42(1):62 − 74. Dong T,Du B,Duan Z Y,et al.,2022. Metallogenic regularity and prospecting direction of tungsten deposits in Shangri-La area, NW Yunnan Province, China[J]. Sedimentary Geology and Tethyan Geology,42(1):62 − 74 (in Chinese with English abstract).
[12] Dostal J,Kontak D J,Chatterjee A K,2009. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits,Meguma Terrane,Nova Scotia,Canada:genetic implications[J]. Mineralogy and Petrology,97(1-2):95 − 109. DOI: 10.1007/s00710-009-0067-0
[13] 范新,陈雷,秦克章,等,2011. 西藏山南地区明则斑岩钼矿床蚀变矿化特征与成矿时代[J]. 地质与勘探,47(1):89 − 99. Fan X,Chen L,Qin K Z,et al.,2011. Characteristics of alteration and mineralization and chronology of the Mingze porphyry Mo deposit in the Shannan area of southern Tibet[J]. Geology and Exploration,47(1):89 − 99 (in Chinese with English abstract).
[14] 方树元,2003. 西藏自治区乃东县劣布铜矿区的矿床地质特征及找矿远景分析[J]. 地质找矿论丛(S1):48 − 51. DOI: 10.3969/j.issn.1001-1412.2003.z1.011 Fang S Y,2003. Geological characteristics of Liebu Cu deposit,Naidong County,Tibet and analysis of its prospect[J]. Contributions to Geology and Mineral Resources Research(S1):48 − 51 (in Chinese with English abstract). DOI: 10.3969/j.issn.1001-1412.2003.z1.011
[15] Ghaderi M,Palin J M,Campbell I H,et al.,1999. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region,Western Australia[J]. Economic Geology,94(3):423 − 437. DOI: 10.2113/gsecongeo.94.3.423
[16] Guo S,Chen Y,Liu C Z,et al.,2016. Scheelite and coexisting F-rich zoned garnet,vesuvianite,fluorite,and apatite in calc-silicate rocks from the Mogok metamorphic belt,Myanmar:Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization[J]. Journal of Asian Earth Sciences,117:82 − 106. DOI: 10.1016/j.jseaes.2015.12.004
[17] Han J S,Chen H Y,Hong W,et al.,2020. Texture and geochemistry of multi-stage hydrothermal scheelite in the Tongshankou porphyry-skarn Cu-Mo(-W) deposit,eastern China:Implications for ore-forming process and fluid metasomatism[J]. American Mineralogist,105(6):945 − 954. DOI: 10.2138/am-2020-7194
[18] 何明华,黄波,喻亨祥,等,2007. 藏南冲木达铜矿地质特征[J]. 沉积与特提斯地质,27(4):91 − 98. DOI: 10.3969/j.issn.1009-3850.2007.04.017 He M H,Huang B,Yu H X,et al.,2007. Geology of the Chongmuda copper deposit in Sangri, southern Xizang[J]. Sedimentary Geology and Tethyan Geology,27(4):91 − 98 (in Chinese with English abstract). DOI: 10.3969/j.issn.1009-3850.2007.04.017
[19] 侯德华,潘志龙,杨鑫朋,等,2023. 西藏札佐晚白垩世中期埃达克岩年代学、地球化学及其构造意义[J]. 沉积与特提斯地质,43(3):592 − 603. Hou D H,Pan Z L,Yang X P,et al.,2023. Chronology,geochemistry and tectonic significance of middle stage of Late Cretaceous adakite in Zhazuo aera,Tibet[J]. Sedimentary Geology and Tethyan Geology,43(3):592 − 603 (in Chinese with English abstract).
[20] Hou Z Q,Cook N J,2009. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue[J]. Ore Geology Reviews,36(1-3):2 − 24. DOI: 10.1016/j.oregeorev.2009.05.001
[21] 侯增谦,曲晓明,黄卫,等,2001. 冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J]. 中国地质(10):27 − 29+40. DOI: 10.3969/j.issn.1000-3657.2001.10.005 Hou Z Q,Qu X M,Huang W,et al.,2001. Gangdise porphyry copper ore belt is expected to become the second "Yulong" copper ore belt in Tibet[J]. Chinese Geology(10):27 − 29+40 (in Chinese with English abstract). DOI: 10.3969/j.issn.1000-3657.2001.10.005
[22] 江化寨,曾海良,吴志山,2011. 藏山南努日矿区层矽卡岩型铜钨钼矿床地质特征及深部找矿预测[J]. 地质与勘探,47(1):71 − 77. Jiang H Z,Zeng H L,Wu Z S,2011. Geological characteristics and prospecting prediction in deep area of layer skarn Cu-W-Mo deposit in Shannan Nuri ore district,Tibet[J]. Geology and Exploration,47(1):71 − 77 (in Chinese with English abstract).
[23] 江化寨,江善元,2006. 西藏劣布铜矿的基本特征及成因初探[J]. 地质找矿论丛(S1):10 − 14. Jiang H Z,Jiang S Y,2006. Geological characteristics and preliminary discussion on genesis of Liebu copper deposit in Tibet[J]. Contributions to Geology and Mineral Resources Research(S1):10 − 14 (in Chinese with English abstract).
[24] 兰双双,汪雄武,李光明,等,2012. 西藏克鲁−冲木达矿集区晚白垩世花岗岩类地质地球化学特征及成矿潜力浅析[J]. 沉积与特提斯地质,32(4):76 − 85. DOI: 10.3969/j.issn.1009-3850.2012.04.012 Lan S S,Wang X W,Li G M,et al.,2012. Geology,geochemistry and metallogenic potentiality of the Late Cretaceous granitoids in the Kelu-Chongmuda ore district,Xizang[J]. Sedimentary Geology and Tethyan Geology,32(4):76 − 85 (in Chinese with English abstract). DOI: 10.3969/j.issn.1009-3850.2012.04.012
[25] 冷秋锋,李文昌,戴成龙,等,2023. 西藏那茶淌铅锌矿床S-Pb同位素组成及其示踪成矿物质来源[J]. 沉积与特提斯地质,43(1):168 − 179. DOI: 10.3969/j.issn.1009-3850.2023.01.013 Leng Q F,Li W C,Dai C L,et al.,2023. Sulfur and lead isotope composition tracing for the ore-forming material source of Nachatang Pb-Zn deposit in Tibet[J]. Sedimentary Geology and Tethyan Geology,43(1):168 − 179 (in Chinese with English abstract). DOI: 10.3969/j.issn.1009-3850.2023.01.013
[26] 冷秋锋,唐菊兴,郑文宝,等,2016. 西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成[J]. 地球科学,41(6):999 − 1015. Leng Q F,Tang J X,Zheng W B,et al.,2016. Geochronology,Geochemistry and zircon Hf isotopic compositions of the ore-bearing porphyry in the Lakang'e porphyry Cu-Mo deposit,Tibet[J]. Earth Science,41(6):999 − 1015 (in Chinese with English abstract).
[27] Li C,Zhou L,Zhao Z,et al.,2018. In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS[J]. Journal of Asian Earth Sciences,160:38 − 47.
[28] Li G M,Qin K Z,Ding K S,et al.,2006. Geology, Ar-Ar age and mineral assemblage of Eocene skarn Cu-Au±Mo deposits in the southeastern Gangdese arc, southern Tibet: Implications for deep exploration[J]. Resource Geology,56(3):315 − 336. DOI: 10.1111/j.1751-3928.2006.tb00286.x
[29] 李光明,刘波,佘宏全,等,2006. 西藏冈底斯成矿带南缘喜马拉雅早期成矿作用——来自冲木达铜金矿床的Re-Os同位素年龄证据[J]. 地质通报,25(12):1481 − 1486. Li G M,Liu B,She H Q,et al.,2006. Early Himalayan mineralization on the southern margin of the Gangdise metallogenic belt,Tibet,China:Evidence from Re-Os ages of the Chongmuda skarn-type Cu-Au deposit[J]. Geological Bulletin of China,25(12):1481 − 1486 (in Chinese with English abstract).
[30] 李光明,秦克章,陈雷,等,2010. 冈底斯东段山南地区第三纪矽卡岩−斑岩Cu-Mo-W(Au)多金属矿床勘查模型及深部找矿意义[J]. 地质与勘探,47(1):20 − 30. Li G M,Qin K Z,Chen L,et al.,2010. The metallogenic model of Eocene skarn Cu-Mo-W (Au) deposits in the eastern section of Gangdese southern Tibet and its implication for ore- search towards the deep subsurface[J]. Geology and Exploration,47(1):20 − 30 (in Chinese with English abstract).
[31] 李光明,王高明,高大发,等,2002. 西藏冈底斯南缘构造格架与成矿系统[J]. 沉积与特提斯地质,22(2):1 − 7. Li G M,Wang G M,Gao D F,et al.,2022. The tectonic framework and metallogenic systems in southern Gangdise metallogenic belt,Xizang[J]. Sedimentary Geology and Tethyan Geology,22(2):1 − 7 (in Chinese with English abstract).
[32] 李光明,张林奎,吴建阳,等,2020. 青藏高原南部洋板块地质重建及科学意义[J]. 沉积与特提斯地质,40(1):1 − 14. Li G M,Zhang L K,Wu J Y,et al.,2020. Reestablishment and scientific significance of the Ocean plate geology in the Southern Tibet Plateau,China[J]. Sedimentary Geology and Tethyan Geology,40(1):1 − 14 (in Chinese with English abstract).
[33] 李光明,张林奎,张志,等,2021. 青藏高原南部的主要战略性矿产:勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质,41(2):351 − 360. Li G M,Zhang L K,Zhang Z,et al.,2021. New exploration progresses,resource potentials and prospecting targets of strategic minerals in the southern Qinghai-Tibet Plateau[J]. Sedimentary Geology and Tethyan Geology,41(2):351 − 360 (in Chinese with English abstract).
[34] 李洪英,杨磊,陈剑锋,等,2021. 江南古陆西段木瓜园钨矿床成矿流体演化过程研究[J]. 岩石学报,37(3):911 − 926. Li H Y,Yang L,Chen J F,et al.,2021. Geological and ore-forming fluids characteristics of the Muguayuan tungsten deposit in the western part of the Jiangnan massif[J]. Acta Petrologica Sinica,37(3):911 − 926 (in Chinese with English abstract).
[35] Liu Y,Gao S,Hu Z,et al.,2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology,51(1-2):537 − 571. DOI: 10.1093/petrology/egp082
[36] Liu Y,Hu Z,Zong K,et al.,2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin,55(15):1535 − 1546. DOI: 10.1007/s11434-010-3052-4
[37] 莫宣学,董国臣,赵志丹,等,2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报(3):281 − 290. Mo X X,Dong G C,Zhao Z D,et al.,Spatial and temporal distribution and characteristics of granitoids in the Gangdese,Tibet and implication for crustal growth and evolution[J]. Geological Journal of China Universities(3):281 − 290 (in Chinese with English abstract).
[38] Nassau K,Loiacono G M,1963. Calcium tungstate— III. Trivalent rare earth substitution[J]. Journal of Physics and Chemistry of Solids,24(12):1503 − 1510. DOI: 10.1016/0022-3697(63)90090-8
[39] 聂利青,周涛发,张千明,等,2017. 安徽东顾山钨矿床白钨矿主微量元素和Sr-Nd同位素特征及其对成矿作用的指示[J]. 岩石学报,33(11):3518 − 3530. Nie L Q,Zhou T F,Zhang Q M,et al.,2017. Trace elements and Sr-Nd isotopes of scheelites: Implications for the skarn tungsten mineralization of the Donggushan deposit, Anhui Province, China[J]. Acta Petrologica Sinica,33(11) :3518 − 3530 (in Chinese with English abstract).
[40] 潘桂棠,王立全,尹福光,等,2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质,42(2):151 − 175. Pan G T,Wang L Q,Yin F G,et al.,2022. Researches on geological-tectonic evolution of Tibetan Plateau:A review, recent advances, and directions in the future[J]. Sedimentary Geology and Tethyan Geology,42(2):151 − 175 (in Chinese with English abstract).
[41] Poulin R S,Kontak D J,McDonald A,et al.,2018. Assessing scheelite as an ore-deposit discriminator using its trace-element and REE chemistry[J]. The Canadian Mineralogist,56(3):265 − 302. DOI: 10.3749/canmin.1800005
[42] 任云生,赵华雷,雷恩,等,2010. 延边杨金沟大型钨矿床白钨矿的微量和稀土元素地球化学特征与矿床成因[J]. 岩石学报,26(12):3720 − 3726. Ren Y S,Zhao H L,Lei E,et al.,2010. Trace element and rare earth element geochemistry of the scheelite and ore genesis of the Yangjingou large scheelite deposit in Yanbian area,northeastern China[J]. Acta Petrologica Sinica,26(12):3720 − 3726 (in Chinese with English abstract).
[43] Soloviev S G,Kryazhev S G,Dvurechenskaya S S,2017. Geology mineralization,and fluid inclusion characteristics of the Lermontovskoe reduced-type tungsten (Cu,Au,Bi) skarn deposit,Sikhote-Alin,Russia[J]. Ore Geology Reviews,89:15 − 39. DOI: 10.1016/j.oregeorev.2017.06.002
[44] Song G X,Cook N J,Li G M,et al.,2019. Scheelite geochemistry in porphyry-skarn W-Mo systems:A case study from the Gaojiabang Deposit,East China[J]. Ore Geology Reviews,113:103084. DOI: 10.1016/j.oregeorev.2019.103084
[45] Song G X,Qin K Z,Li G G,et al.,2014. Scheelite elemental and isotopic signatures:Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area,Anhui Province,Eastern China[J]. American Mineralogist,99(2-3):303 − 317. DOI: 10.2138/am.2014.4431
[46] Sun K,Chen B,2017. Trace elements and Sr-Nd isotopes of scheelite:Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit,South China[J]. American Mineralogist,102:1114 − 1128.
[47] Sun S S,McDonough W F,1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society,London,Special Publications,42(1):313 − 345. DOI: 10.1144/GSL.SP.1989.042.01.19
[48] 唐菊兴,王立强,王国芝,等,2017. 西藏冈底斯成矿带东段中、新生代斑岩成矿系统岩石地球化学与年代学测试数据集[J]. 中国地质(S1):64 − 71+194 − 203. Tang J X,Wang L Q,Wang G Z,et al.,2017. Lithogeochemical and chronological test dataset of Mesozoic and Cenozoic porphyry metallogenic system in the eastern section of the Gangdise metallogenic belt,Tibet[J]. Geology in China(S1):64 − 71+194 − 203 (in Chinese with English abstract).
[49] 王立强,唐菊兴,陈伟,等,2014. ,西藏努日、程巴铜−钼-钨矿床硫铅同位素地球化学[J]. 地球学报,35(1):39 − 48. DOI: 10.3975/cagsb.2014.01.06 Wang L Q,Tang J X,Chen W,et al.,2014. ,Sulfur and lead isotopic geochemistry of the Nuri and Chengba Cu-Mo-W deposits in Tibet[J]. Acta Geoscientica Sinica,35(1):39 − 48 (in Chinese with English abstract). DOI: 10.3975/cagsb.2014.01.06
[50] 王立强,唐菊兴,罗茂澄,等,2012. ,西藏努日矿区隐伏斑岩型矿体的潜在性研究[J]. 金属矿山,41(4):109 − 113. DOI: 10.3969/j.issn.1001-1250.2012.04.028 Wang L Q,Tang J X,Luo Mao C,et al.,2012. Study on the existence of blind porphyry ore-body in Nuri ore district,Tibet[J]. Metal Mine,41(4):109 − 113 (in Chinese with English abstract). DOI: 10.3969/j.issn.1001-1250.2012.04.028
[51] 王勤,黄勇,董随亮,等,2018. 冈底斯成矿带东段努日矿床成矿斑岩年代学、地球化学及其意义[J]. 矿床地质,37(3):571 − 586. Wang Q,Huang Y,Dong S L,et al.,2018. Zircon LA-CP-MS U-Pb geochronology,geochemistry and implications of ore -forming porphyry in Nuri skarn Cu-Mo-W deposit,eastern Gangdise[J]. Mineral Deposits,37(3):571 − 586 (in Chinese with English abstract).
[52] 王少怀,陈自康,2003. 西藏克鲁—冲木达铜金矿带矿床地质特征及其成矿规律[J]. 地质与勘探(2):21 − 25. DOI: 10.3969/j.issn.0495-5331.2003.02.005 Wang S H,Chen Z K,2003. Geological characters and metallogenic regulation of Kelu-Chongmuda copper and gold belt in Tibet[J]. Geology and Prospecting(2):21 − 25 (in Chinese with English abstract). DOI: 10.3969/j.issn.0495-5331.2003.02.005
[53] 王欣欣,郑荣才,闫国强,等,2014. 努日铜钼钨矿床黄铜矿Re-Os定年及意义[J]. 金属矿山(10):126 − 129. Wang X X,Zheng R C,Yan Guo Q,et al.,2014. Re-Os dating of chalcopyrite of Nuri Cu-Mo-W deposit and its significance[J]. Metal Mine(10):126 − 129 (in Chinese with English abstract).
[54] Wu C D,Zheng Y C,Xu B,et al,2018. The genetic relationship between JTA–like magmas and typical adakites:An example from the Late Cretaceous Nuri complex,southern Tibet[J]. Lithos,320-321:265 − 279. DOI: 10.1016/j.lithos.2018.09.031
[55] 吴志山,邵兴隆,2016. 西藏山南努日矿区斑岩型铜钼矿找矿潜力[J]. 现代矿业,32(2):100 − 103. DOI: 10.3969/j.issn.1674-6082.2016.02.031 Wu Z S,Shao X L,2016. Prospecting potential of porphyry copper molybdenum deposit in Nuri mining area,Shannan,Tibet[J]. Modern Mining,32(2):100 − 103 (in Chinese with English abstract). DOI: 10.3969/j.issn.1674-6082.2016.02.031
[56] 谢桂青,陈小龙,马龙敬,等,2021. 冈底斯成矿带林周县程巴矽卡岩铜多金属矿床特征:对藏南区域古新世铜矿床的找矿启示[J]. 矿床地质,40(3):625 − 630. Xie G Q,Chen X L,Ma L J,et al.,2021. Chengba copper polymetallic skarn deposit in Linzhou County,Gangdese metallogenic belt:Implications for mineral exploration of regional Paleocene Cu deposits in southern Tibet[J]. MINERAL DEPOSITS,40(3):625 − 630 (in Chinese with English abstract).
[57] 熊德信,孙晓明,石贵勇,等,2006. 云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义[J]. 岩石学报,22(3):733 − 741. Xiong D X,Sun X M,Shi G Y,et al.,2006. Trace elements. rare earth elements ( REE) and Nd-Sr isotopic compositions in scheelites and their implications for the mineralization in Daping gold mine in Yunnan province,China [J]. Acta Petrologica Sinica,22(3):733 − 741 (in Chinese with English abstract).
[58] 闫国强,2015. 西藏山南努日铜钼钨矿床地质特征及矿床成因研究[D]. 成都:成都理工大学. Yan G Q,2015. The geological characteristics and genesis research of Nuri Cu-Mo-W deposit in Shannan,Tibet[D]. Chengdu:Chengdu University of Technology (in Chinese with English abstract).
[59] 闫国强,王欣欣,黄勇,等,2018. 西藏山南努日超大型钨多金属矿床岩浆演化对区域成矿作用指示[J]. 地质学报,92(10):2138 − 2154. DOI: 10.3969/j.issn.0001-5717.2018.10.013 Yan G Q,Wang X X,Huang Y,et al.,2018. Evolution characteristics of magma in the Nuri superlarge polymetallic deposit,Tibet:Implications for regional mineralization in the Shannan ore cluster area[J]. Acta Geologica Sinica,92(10):2138 − 2154 (in Chinese with English abstract). DOI: 10.3969/j.issn.0001-5717.2018.10.013
[60] 闫学义,黄树峰,2010. 冈底斯东段泽当大型钨铜钼矿新发现及走滑型陆缘成矿新认识[J]. 地质论评,56(1):9 − 20. Yan X Y,Huang S F,2010. Discovery of large Zedang tungsten - copper-molybdenum orefield,eastern Gangdese arc,and new understanding on strike-slip type epicontinental mineralization[J]. Geological Review,56(1):9 − 20 (in Chinese with English abstract).
[61] 闫学义,黄树峰,杜安道,2010. 冈底斯泽当大型钨铜钼矿Re-Os年龄及陆缘走滑转换成矿作用[J]. 地质学报,84(3):398 − 406. Yan X Y,Huang S F,Du A D,2010. Re-Os ages of large tungsten,copper and molybdenum deposit in the Zetang orefield,Gangdise and marginal strike-slip transforming metallogenesis[J]. Acta Geologica Sinica,84(3):398 − 406 (in Chinese with English abstract).
[62] 姚兴华,张志平,梁硕鹏,等,2019. 西藏山南努日地区比马组火山岩地球化学特征及成因[J]. 矿产勘查,10(9):2119 − 2128. DOI: 10.3969/j.issn.1674-7801.2019.09.001 Yao X H,Zhang Z P,Liang S P,et al.,2019. Geochemistry and origin of the volcanic rocks in Bima Formation,in Nuri area,Shannan,Tibet[J]. Mineral Exploration,10(9):2119 − 2128 (in Chinese with English abstract). DOI: 10.3969/j.issn.1674-7801.2019.09.001
[63] 张峻基,2014. 西藏努日矽卡岩型矿床地球化学特征及成因研究[D]. 成都:成都理工大学. Zhang J J,2014. The geochemical feature and genesis of Nuri skarn deposit in Tibet[D]. Chengdu:Chengdu University of Technology (in Chinese with English abstract).
[64] 张松,郑远川,黄克贤,等,2012. 努日矽卡岩型铜钨钼矿辉钼矿Re-Os定年及其地质意义[J]. 矿床地质,31(2):337 − 346. DOI: 10.3969/j.issn.0258-7106.2012.02.013 Zhang S,Zheng Y C,Huang K X,et al.,2012. Re Os dating of molybdenite from Nuri Cu-W-Mo deposit and its geological significance[J]. MINERAL DEPOSITS,31(2):337 − 346 (in Chinese with English abstract). DOI: 10.3969/j.issn.0258-7106.2012.02.013
[65] 张志平,钟康惠,董瀚,等,2020. 西藏桑日县帕南岩体岩石学、地球化学、地质年代学研究及构造背景探讨[J]. 沉积与特提斯地质,40(2):52 − 64. Zhang Z P,Zhong K H,Dong H,et al.,2020. Petrology,geochemistry and tectonic setting of the Panan intrusion in Mamen,Sangri,Tibet[J]. Sedimentary Geology and Tethyan Geology,40(2):52 − 64 (in Chinese with English abstract).
[66] Zhao W W,Zhou M F. 2018,Mineralogical and metasomatic evolution of the Jurassic Baoshan scheelite skarn deposit,Nanling,South China[J]. Ore Geology Reviews,95:182 − 194.
[67] 周鹏,荣峰,多吉卫色,等,2020. 冈底斯中段厅宫地区比马组碎屑锆石U-Pb年龄[J]. 沉积与特提斯地质,40(2):141 − 150. Zhou P,Rong F,DuoJi W S,et al.,2020. U-Pb dating for detrital zircons from the Bima Formation,Tinggong,Tibet[J]. Sedimentary Geology and Tethyan Geology,40(2):141 − 150 (in Chinese with English abstract).
[68] 朱弟成,潘桂棠,王立全,等,2008. 西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J]. 地质通报,27(4):458 − 468. Zhu D C,Pan G T,Wang L Q,et al.,2008. Spatial-temporal distribution and tectonic setting of Jurassic magmatism in the Gangdise belt,Tibet,China[J]. Geological Bulletin of China,27(4):458 − 468 (in Chinese with English abstract).
-
其他相关附件
-
DOCX格式
吴志山-沉积与特提斯地质-2024-附表 点击下载(209KB)
-