The marine rifted successions of the Late Carboniferous–Early Permian deposits from the South Qiangtang Block in the Rutog area, Northern Xizang: Sedimentary records of a rifting process on the northern Gondwana margin
-
摘要:
南羌塘地块被广泛认为是晚古生代亲冈瓦纳的基梅里大陆的一部分,其构造演化历史与冈瓦纳北缘裂解及班公湖–怒江中特提斯洋的打开关系密切。虽然众多研究成果显示,南羌塘地块在早二叠世从冈瓦纳大陆北缘裂解而来,但这在盆地沉积响应上却没有得到确切的证实。本文通过研究藏北日土地区晚石炭—早二叠世受冰期影响的4类16个岩相、6类沉积环境特征和不同沉积作用演化阶段,划分出受盆地基底构造沉降控制和气候影响的5个沉积充填序列,并分析其所反映的沉积物供应与可容空间变化,揭示沉积充填序列形成过程中的构造–气候控制因素。研究表明,序列Ⅰ在晚石炭世—早二叠世阿舍尔期沉积,表现为冰川沉积物补偿了盆地基底沉降形成的沉积可容空间,是同裂谷早期阶段构造活动与气候共同作用的结果;在萨克马尔期至亚丁斯克早期,以展金组为代表的冰海相海侵退积序列(序列Ⅱ)和以曲地组为代表的海退进积–加积序列(序列Ⅲ),分别反映同裂谷活动第一幕高峰期和停滞期;亚丁斯克晚期至空谷期,以吞龙共巴组下段为代表的海侵加积–退积序列(序列Ⅳ)和以吞龙共巴组上段为代表的加积–进积序列(序列Ⅴ)则分别指向同裂谷活动第二幕高峰期和减弱期。因此,藏北日土地区南羌塘地块晚石炭—早二叠世沉积充填序列是冈瓦纳大陆北缘裂解过程的沉积响应,早二叠世是班公湖–怒江中特提斯洋初始打开的关键时期。
Abstract:The South Qiangtang Block (SQB) is widely acknowledged as part of the Cimmerian Continent, which rifted away from the northern Gondwana margin during the Early Permian, marking the initial opening of the Bangong-Nujiang Meso-Tethys Ocean. However, the sedimentary response to this rifting event remains unconfirmed, leaving the event ambiguous. In this study, five sedimentary successions are identified in the Rutog area, Northern Xizang, each characterized by distinct facies that record different stages in the tectonic evolution and climatic influences on the basin, along with associated changes in the rates of basin subsidence and sediment accommodation. Succession Ⅰ, formed in the Late Carboniferous to Asselian age, shows that glaciomarine sediments compensated for the sediment accommodation generated by the basin subsidence, resulting from tectonic activities and climatic factors in the early stage of the syn-rift. During the Sakmarian to early Artinskian age, the glaciomarine retrogradational sequence represented by the Zhanjin Formation (Succession Ⅱ) and the following progradational-aggradational sequences represented by the Qudi Formation (Succession Ⅲ) mark the climax and standstill stages of the first episode of the syn-rift tectonic activities, respectively. In the late Artinskian to Kungurian age, the second episode of syn-rift is manifested by the Succession Ⅳ and Ⅴ. And the former retrogradational sequence (Succession Ⅳ), reflected in the lower part of the Tunlonggongba Formation, indicates a climax stage of syn-rift tectonic activity, while the latter aggradational-progradational sequences (Succession Ⅴ), represented by the upper part of the Tunlonggongba Formation, mark a stage of tectonic quiescence. Therefore, these Early Permian sedimentary successions in the SQB are best explained by the tectonic subsidence resulting from the rifting of the SQB from the Gondwana margin, suggesting an early Permian timeline for the initial opening of the Bangong-Nujiang Meso-Tethys Ocean.
-
-
图 3 砂岩相(S)
A. 块状砂岩相(Sm)(展金组);B. 块状砂岩相(Sm)(曲地组);C. 正粒序层理砂岩相(Sg)(曲地组底部);D. 正粒序层理砂岩相(Sg)(展金组);E. 软变形层理砂岩相(Sd)(展金组);F. 软变形层理砂岩相(Sd)(曲地组底部);G-H. 具冲刷构造砂岩相(Ss)(曲地组下部);I-J. 板状交错层理砂岩相(Sp)(曲地组下部);K-L. 槽状交错层理砂岩相(St)(曲地组下部);M-N. 具小型波纹层理砂岩相(Sr)(展金组);O. 钙质砂岩相(Sc),发育潮汐层理(吞龙共巴组下段);P. 钙质砂岩相(Sc)(展金组)
Figure 3. Sandstone facies (S)
图 7 沉积序列Ⅱ中发育大型滑塌构造(据Zhang et al., 2023)
A、 C、 D. 滑塌构造野外露头照片;B. 滑塌构造素描图(根据照片A绘制)
Figure 7. The large scale slumping structures in the Succession Ⅱ (after Zhang et al., 2023)
表 1 研究区晚石炭—早二叠世地层岩相、代号、特征及成因解释
Table 1 The facies, codes, description, and origin of the Late Carboniferous–Early Permian strata in the study area
岩相及代号 特征 成因 层位 杂砾岩相
Dm块状杂砾岩相Dmm 泥、砂、砾等颗粒混杂堆积,碎屑成分复杂,
基底支撑,砾石表面常见擦痕、压坑等冰碛
特征,无沉积构造、颗粒排列无定向冰盖、冰棚、冰筏
等冰川成因擦蒙组、展金组 微层状杂砾岩相Dms 砂、砾以及冰碛物混杂,碎屑成分复杂,
层理化或弱层理化,偶见粒序层冰舌或冰筏碎屑被重力流改造 擦蒙组、展金组 砂岩相
S块状砂岩相Sm 细粒至中粒净砂岩或杂砂岩,几无内部沉
积构造浊流或重力流沉积 擦蒙组、展金组、曲地组、吞龙共巴组 粒序层理砂岩相Sg 细粒至粗粒砂岩的净砂岩或杂砂岩,
具正粒序悬浮沉降作用或浊流 展金组、曲地组 软变形砂岩相Sd 软变形的砂岩或粉砂岩,具包卷层理、
槽模、滑塌–滑移等层内或层面沉积构造重力滑塌滑移、泄水作用 展金组、曲地组 具冲刷构造砂岩相Ss 中粒至粗粒砂或细砾,发育低角度交错层
理以及冲刷构造,可见滞留泥砾层和生物
扰动构造波浪牵引作用,
水道流曲地组、吞龙共巴组 具板状交错层理砂岩相Sp 中粒至粗粒砂或含细砾,发育单向或双向
板状交错层理,底面平直或微冲刷,可见
生物扰动构造波浪或潮汐牵引
作用,水道流曲地组、吞龙共巴组 具槽状交错层理砂岩相St 中粒至粗粒砂或含砾,发育槽状交错层理,
层间通常具冲刷面辫状水道流 曲地组 具小型波纹层理砂岩相Sr 粉砂或细砂,具小型波纹层理的净砂岩或
杂砂岩,通常层面发育小型浪成波痕波浪或潮汐牵引流、底流或层间流 展金组、曲地组 高成熟钙质砂岩相Sc 中粒至粗粒砂,极好的分选和磨圆,石英
颗粒含量高,钙质胶结,常见生物扰动构造波浪或潮汐牵引作
用,沿岸流或强风暴潮,再沉积作用曲地组、吞龙共
巴组,展金组细碎屑
岩相
F块状细碎屑岩相Fm 深色泥或细粉砂,数厘米至数米厚,几无
内部沉积构造悬浮沉降作用,
洪积、浊流擦蒙组、展金组、曲地组、吞龙共巴组 具水平层理细碎屑岩Fl 深色泥或细粉砂,毫米或厘米级粒序层
堆积,可见水平层理悬浮沉降作用,浊流 擦蒙组、展金组、曲地组、吞龙共巴组 含杂砾岩具水平层理的细碎屑岩相 Fld 粉砂或泥质基底支撑,可见水平层理,
冰筏碎屑零散分布,常见坠石构造浊流、冰筏倾泄 展金组 灰岩相
L泥灰岩相 marl 黑色极薄层状或透镜状,常见粉砂级
陆源碎屑化学沉淀–机械沉积
作用展金组、曲地组、
吞龙共巴组砂质灰岩相Ms 含砂级陆源碎屑的泥晶灰岩,局部见双壳类
壳体碎片定向排列,呈长透镜状产出化学–机械沉积作用,潮汐风暴,滞留沉积 吞龙共巴组 粒泥灰岩相 Mb 生屑泥晶灰岩,中—厚层状,含少量有
孔虫、介壳、藻类生物碎屑化学沉淀 吞龙共巴组 颗粒灰岩相 Gs 颗粒灰岩,亮晶胶结,含大量分选良好的有
孔虫、苔藓虫等生物碎屑颗粒机械筛洗作用 吞龙共巴组 表 2 研究区晚石炭世—早二叠世沉积环境划分
Table 2 Classification of sedimentary environments from the Late Carboniferous to Early Permian of the study area
沉积环境 亚环境 次环境 岩相组合 海洋环境 受冰川影响碎屑岩浅海 陆棚 浅水陆棚/深水陆棚 Dmm, Dms, Sm, Fm, Fl 陆棚边缘 陆棚边缘盆地 Dmm, Dms, Fm 陆棚边缘斜坡 Dms, Sc, Sg, Sd, Sr, Fm, Fl, Fld, marl 正常碎屑岩浅海 陆棚边缘 陆棚边缘盆地 Sm, Fm, marl 正常碳酸盐岩浅海 碳酸盐岩台地 局限台地 Mb, Ms 台地边缘 Gs, Ms 开阔台地 Mb 过渡环境 三角洲 前三角洲 远滨 Sd, Sg, Ss, Sr, Sm, Fl 三角洲前缘 水下分流河道 Ss, St, Sr 水下天然堤 Sm, Fm, Fl, marl 远砂坝 Sp, Sm 三角洲平原 分流河道 Sp, St, Ss 分流间洼地 Sr, Sm, Fm, Fl 河口湾 潮坪 潮间带 Sp, Sc, Ss, Sm, Fm, Fl 潮下带 Sm, Sc, Fm, Fl, Ms, marl 海岸 障壁海岸 障壁岛 Mb, Gs 潟湖 Mb, Fm 潮坪 Sm, Sp, Sr, Fl, Ms -
[1] Allen P A,Allen J R,2013. Basin analysis:Principles and application to petroleum play assessment[M]. John Wiley & Sons:619.
[2] Angiolini L,Balini M,Garzanti E,et al.,2003. Gondwanan deglaciation and opening of Neotethys:The Al Khlata and Saiwan Formations of Interior Oman[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 196(1-2):99 − 123.
[3] Bhattacharya J,2010. Deltas[M]//James N P, Dalrymple R W. Facies Models 4: GEOtext 6. St. John's, Newfoundland:Geological Association of Canada:233 − 264.
[4] 曹竣锋,宋春彦,付修根,等,2015. 羌塘盆地羌资5井二叠系展金组烃源岩基本特征[J]. 海相油气地质, 20(2):15 − 20. Cao J F,Song C Y,Fu X G,et al.,2015. Basic characteristics of Permian Zhanjin source rock in Well Qiangzi-5 in Qiangtang Basin[J]. Marine Origin Petroleum Geology, 20(2):15 − 20 (in Chinese with English abstract).
[5] Catuneanu O,2006. Principles of sequence stratigraphy[M]. 1st ed. Amsterdam:Elsevier:375.
[6] Chen S S,Shi R D,Fan W M,et al.,2017. Early Permian mafic dikes in the Nagqu area,central Tibet,China,associated with embryonic oceanic crust of the Meso-Tethys Ocean[J]. Journal of Geophysical Research:Solid Earth, 122(6):4172 − 4190.
[7] 陈文彬,付修根,谭富文,等,2013. 藏北羌塘盆地石炭系烃源岩的发现及其油气地质意义[J]. 地质通报, 32(7):1105 − 1112. Chen W B,Fu X G,Tan F W,et al.,2013. The discovery of the Carboniferous source rock in Qiangtang Basin of Tibet and its geological significance[J]. Geological Bulletin of China, 32(7):1105 − 1112 (in Chinese with English abstract).
[8] 陈耀飞,高金汉,王根厚,等,2016. 西藏荣玛地区尼俄玛山下二叠统曲地组沉积特征[J]. 古地理学报,18(1):49 − 63. Chen Y F,Gao J H,Wang G H,et al.,2016. Sedimentary characteristics of the Lower Permian Qudi Formation of Ni'ema Mountain in Rongma area,Tibet [J]Journal of Palaeogeography,18(1):49 − 63 (in Chinese with English abstract).
[9] 程立人,陈寿铭,张以春,等,2006. 西藏羌北地区石炭纪地层的发现[J]. 地学前缘, 13(4):240 − 243. Cheng L R,Chen S M,Zhang Y C,et al.,2006. Discovery of Carboniferous strata in northern Qiangtang basin,Tibet[J]. Earth Science Frontiers, 13(4):240 − 243 (in Chinese with English abstract).
[10] Dalrymple R W,2010. Tidal depositional systems[M]//James N P, Dalrymple R W. Facies Models 4: GEOtext 6. St. John's,Newfoundland:Geological Association of Canada:201 − 231.
[11] Dan W,Wang Q,Murphy J B,et al., 2021. Short duration of Early Permian Qiangtang-Panjal large igneous province:Implications for origin of the Neo-Tethys Ocean[J]. Earth and Planetary Science Letters,568:117054.
[12] 丁林,李震宇,宋培平,2017. 青藏高原的核心来自南半球冈瓦纳大陆[J]. 中国科学院院刊,32(9):945 − 950. Ding L,Li Z Y,Song P P,2017. Core fragments of Tibetan Plateau from Gondwanaland united in Northern Hemisphere[J]. China Academic Journal,32(9):945 − 950 (in Chinese with English abstract).
[13] Eyles C H,Eyles N,Miall A D,1985. Models of glaciomarine sedimentation and their application to the interpretation of ancient glacial sequences[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 51(1):15 − 84.
[14] Eyles C H,Eyles N,2010. Glacial deposits[M]//James N P, Dalrymple R W. Facies Models 4: GEOtext 6. St. John's, Newfoundland: Geological Association of Canada: 73 − 104.
[15] Eyles N,1993. Earth's Glacial Record and Its Tectonic Setting[J]. Earth-Science Reviews, 35(1-2):1 − 248.
[16] Eyles N,Eyles C H,Apak S N,et al.,2001. Permian-Carboniferous tectono-stratigraphic evolution and petroleum potential of the northern Canning Basin,Western Australia[J]. AAPG Bulletin, 85(6):989 − 1006.
[17] Eyles N,Eyles C H,Miall A D,1983. Lithofacies types and vertical profile models: An alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences[J]. Sedimentology, 30:393 − 410.
[18] Eyles N,Mory A J,Backhouse J,2002. Carboniferous-Permian palynostratigraphy of west Australian marine rift basins:resolving tectonic and eustatic controls during Gondwanan glaciations[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 184(3-4):305 − 319.
[19] Fan J J,Niu Y L,Luo A B,et al.,2021. Timing of the Meso-Tethys Ocean opening:Evidence from Permian sedimentary provenance changes in the South Qiangtang Terrane,Tibetan Plateau[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,567:110265.
[20] Fan J J,Li C,Wang M,et al.,2015. Features,provenance,and tectonic significance of Carboniferous–Permian glacial marine diamictites in the Southern Qiangtang–Baoshan block,Tibetan Plateau[J]. Gondwana Research, 28(4):1530 − 1542.
[21] Fielding C R,Frank T D,Isbell J L,2008. The late Paleozoic ice age–A review of current understanding and synthesis of global climate patterns[J]. Geological Society of America Special Papers,441:343 − 354.
[22] Gawthorpe R L,Leeder M R,2000. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 12:195 − 218.
[23] Hou Q,Han Z Z,Mou C L,et al.,2021. Petrography and geochemistry of Upper Carboniferous-Early Permian sandstones from Zhanjin Formation in Qiwu area,South Qiangtang Basin,Tibet:Implications for provenance,source weathering and tectonic setting[J]. Geochemistry International, 59(13):1274 − 1292.
[24] Hu J J,Li Q,Fang N Q,et al.,2015. Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone,Qiangtang Basin,Tibet:Insights into source-area weathering,provenance,recycling,and tectonic setting[J]. Arabian Journal of Geosciences, 8(8):5373 − 5388.
[25] Hu X M,Ma A L,Xue W W,et al.,2022. Exploring a lost ocean in the Tibetan Plateau:Birth,growth,and demise of the Bangong-Nujiang Ocean[J]. Earth-Science Reviews, 229:104031.
[26] 黄继钧,2000. 羌塘盆地性质及构造演化[J]. 地质力学学报,6(4):58 − 66. Huang J J,2000. Nature of the Qiangtang basin and its tectonic evolution[J]. Journal of Geomechanics, 6(4):58 − 66 (in Chinese with English abstract).
[27] Iasky R P,Mory A J,Ghori K A R,et al.,1998. Structure and petroleum potential of the southern Merlinleigh Sub-basin,Carnarvon Basin,Western Australia[Z]. Perth:Geological Survey of Western Australia:61.
[28] Isbell J L,Miller M F,Wolfe K L,et al.,2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems?[J]. Geological Society of America Special papers, 370:5 − 24.
[29] 焦鹏伟,梁晓,王根厚,等,2017. 藏北荣玛乡亚丹地区下二叠统曲地组的厘定及大地构造意义[J]. 地质通报, 36(2-3):181 − 189. Jiao P W,Liang X,Wang G H,et al.,2017. Redefinition of the Lower Permian Qudi Formation in Yadan area,Rongma Town,northern Tibet,and its tectonic significance[J]. Geological Bulletin of China, 36(2-3):181 − 189 (in Chinese with English abstract).
[30] Ju Q,Zhang Y C,Yuan D X,et al.,2022. Permian foraminifers from the exotic limestone blocks within the central Qiangtang Metamorphic Belt, Tibet and their geological implications[J]. Journal of Asian Earth Sciences,239:105426.
[31] Kapp P,Yin A,Manning C E,et al.,2003. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt,central Tibet[J]. Tectonics,22(4):17.
[32] 赖绍聪,秦江锋,2009. 青藏高原双湖地区二叠系玄武岩地球化学及其大地构造意义[J]. 地学前缘,16(2):70 − 78. Lai S C,Qin J F,2009. Geochemistry and Tectonic significance of the Permian basalt in Shuanghu area,Tibetan Plateau[J]. Earth Science Frontiers,16(2):70 − 78 (in Chinese with English abstract).
[33] Levell B K,Braakman J H,Rutten K W,1988. Oil-bearing sediments of Gondwana glaciation in Oman[J]. AAPG Bulletin, 72(7):775 − 796.
[34] 李才,解超明,王明,等,2016. 羌塘地质[M]. 北京:地质出版社:1−681. Li C,Xie C M,Wang M,et al.,2016. Geology of the Qiangtang Region[M]. Beijing:Geological Publishing House:1 − 681 (in Chinese with English abstract).
[35] 李才,1987. 龙木错−双湖−澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J]. 长春地质学院学报,(2):155 − 166. Li C,1987. The Longmucuo-Shuanghu-Lancangjiang plate suture and the north boundary of distribution of Gondwana facies Permo-Carboniferous system in Northern Xizang,China[J]. Journal of Changchun College of Geology,(2):155 − 166 (in Chinese with English abstract).
[36] Li W P,Wang Z W,Wang J,et al.,2022. Depositional age,provenance,and palaeoenvironment of the Lower Permian mudstones in the Qiangtang Basin,Tibet:Evidence from geochronology and geochemistry[J]. Geological Journal, 57(4):1709 − 1723.
[37] 梁定益,聂泽同,郭铁鹰,等,1983. 西藏阿里喀喇昆仑南部的冈瓦纳一特提斯相石炭二叠系[J]. 地球科学, 19(1):9 − 27. Liang D Y,Nie Z T,Guo T Y,et al.,1983. Permo-Carboniferous Gondwana-Tethys facies in Southern Karakoran,Ali,Xizang(Tibet)[J]. Earth Science, 19(1):9 − 27 (in Chinese with English abstract).
[38] 刘本培,崔新省,1983. 西藏阿里日土县宽铰蛤( Eurydesma )动物群的发现及其生物地理区系意义[J]. 地球科学, 19(1):79 − 92. Liu B P,Cui X S,1983. Discovery of Eurydesma fauna from Rutog,northwest Xizang (Tibet),and its biogeographic significance[J]. Earth Science, 19(1):79 − 92 (in Chinese with English abstract).
[39] Ma Y M,Wang Q,Wang J,et al.,2019. Paleomagnetic constraints on the origin and drift history of the North Qiangtang terrane in the Late Paleozoic[J]. Geophysical Research Letters, 46(2):689 − 697.
[40] Martins-Neto M A,Catuneanu O,2010. Rift sequence stratigraphy[J]. Marine and Petroleum Geology,27(1):247 − 253.
[41] Merle O,2011. A simple continental rift classification[J]. Tectonophysics,513(1-4):88 − 95.
[42] Metcalfe I,1996. Pre-Cretaceous evolution of SE Asian terranes[J]. Geological Society,London,Special Publications,106(1):97 − 122.
[43] Metcalfe I,2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences,66:1 − 33.
[44] Metcalfe I,2021. Multiple Tethyan ocean basins and orogenic belts in Asia[J]. Gondwana Research, 100:87 − 130.
[45] Miall A D,1977. A review of the braided-river depositional environment[J]. Earth-Science Reviews, 13(1):1 − 62.
[46] Miall A D,2022. Stratigraphy:The modern synthesis[M]. Springer:341 − 417.
[47] 牟传龙,2022. 关于相的命名及其分类的建议[J]. 沉积与特提斯地质,42(3):331 − 339. Mou C L,2022. Suggested naming and classification of the word facies[J]. Sedimentary Geology and Tethyan Geology,42(3):331 − 339 (in Chinese with English abstract).
[48] Neves L F,Guedes C C F,Vesely F F,2019. Facies,petrophysical and geochemical properties of gravity-flow deposits in reservoir analogs from the Itararé Group (late Carboniferous),Paraná Basin,Brazil[J]. Marine and Petroleum Geology,110:717 − 736.
[49] 聂泽同,宋志敏,1983a. 西藏阿里地区日土县下二叠统曲地组的䗴类[J]. 地球科学,19(1):29 − 42. Nie Z T,Song Z M,1983a. Fusulinids of Lower Permian Qudi Formation from Rutog of Xizang (Tibet),China[J]. Earth Science,19(1):29 − 42 (in Chinese with English abstract).
[50] 聂泽同,宋志敏,1983b. 西藏阿里地区日土县下二叠统吞龙共巴组的䗴类[J]. 地球科学,19(1):43 − 55. Nie Z T,Song Z M,1983b. Fusulinids of Lower Permian Tunlonggongba Formation from Rutog of Xizang[J]. Earth Science,19:43 − 55 (in Chinese with English abstract).
[51] Posamentier H W, Vail P R, 1988. Eustatic controls on clastic deposition II - sequence and systems tract models[C]// Wilgus C K, Hastings B S, Kendall C G St. C et al., eds. Sea level changes: an integrated approach.Tulsa, Oklahoma: SEPM Special Publication, 42: 124-154.
[52] Postma G,1986. Classification for sediment gravity flow deposits based on flow conditions during sedimentation[J]. Geology,14:291 − 294.
[53] Postma G,1990. An analysis of the variation in delta architecture[J]. Terra Nova,2(2):124 − 130.
[54] Potter P E,Franca A B,Spencer C W,et al.,1995. Petroleum in glacially-related sandstones of Gondwana:A review[J]. Journal of Petroleum Geology,18(4):397 − 420.
[55] Pullen A,Kapp P,Gehrels G E,et al.,2011. Metamorphic rocks in central Tibet:Lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin,123(3-4):585 − 600.
[56] Ravnås R,Steel R J,1998. Architecture of marine rift-basin successions[J]. AAPG Bulletin,82(1):110 − 146.
[57] Sarg J F, 1988. Carbonate sequence stratigraphy[C]//Wilgus C K, Hastings B S, Kendall C G St. C et al., eds. Sea level changes: an integrated approach,Tulsa, Oklahoma: SEPM Special Publication 42:154-181.
[58] Şengör A M C,1984. The Cimmeride orogenic system and the tectonics of Eurasia[J]. GSA Special Paper,195:1 − 74.
[59] Shanmugam G,2002. Ten turbidite myths[J]. Earth-Science Reviews,58(3-4):311 − 341.
[60] Shanmugam G,2016. The seismite problem[J]. Journal of Palaeogeography,5(4):318 − 362.
[61] Shanmugam G,2006. The tsunamite problem[J]. Journal of Sedimentary Research,76(5):718 − 730.
[62] Shellnutt J G,Bhat G M,Wang K,et al.,2014. Petrogenesis of the flood basalts from the Early Permian Panjal Traps,Kashmir,India:Geochemical evidence for shallow melting of the mantle[J]. Lithos,204:159 − 171.
[63] Shen S,Sun T,Zhang Y,et al.,2016. An upper Kungurian/lower Guadalupian (Permian) brachiopod fauna from the South Qiangtang Block in Tibet and its palaeobiogeographical implications[J]. Palaeoworld,25(4):519 − 538.
[64] 沈树忠, 张以春, 袁东勋, 等. 2024. 青藏高原及其周边二叠纪综合地层、生物群以及古地理和古气候演化[J]. 中国科学: 地球科学, 54(4): 1125 − 1170. Shen S Z,Zhang Y C,Yuan D X,et al.,2024. Permian integrative stratigraphy,biotas,paleogeographical and paleoclimatic evolution of the Qinghai-Tibetan Plateau and its surrounding areas [J]. Scientia Sinica(Terrae),67(4):1107 − 1151.
[65] 宋春彦,王剑,付修根,等,2012. 青藏高原羌塘盆地晚三叠世古地磁数据及其构造意义[J]. 吉林大学学报:地球科学版,42(2):526 − 535. Song C Y,Wang J,Fu X G,et al.,2012. Late Triassic Paleomagnetic data from the Qiangtang terrane of Tibetan Plateau and their tectonic significances[J]. Journal of Jilin University (Earth Science Edition),42(2):526 − 535 (in Chinese with English abstract).
[66] 宋春彦, 王剑, 付修根, 等, 2012. 青藏高原羌塘盆地晚三叠世古地磁数据及其构造意义[J]. 吉林大学学报: 地球科学版, 42(2): 526 − 535. Van Wagoner J C,Mitchum R M,Campion K M,et al.,1990. Siliciclastic sequence stratigraphy in well logs,cores,and outcrops:concepts for high-resolution correlation of time and facies[M]. Tulas,Oklahoma:The American Association of Petroleum Geologists.
[67] Veevers J J,2006. Updated Gondwana (Permian–Cretaceous) earth history of Australia[J]. Gondwana Research,9(3):231 − 260.
[68] 王成善,胡承祖,吴瑞忠,等,1987. 西藏北部查桑−茶布裂谷的发现及其地质意义[J]. 成都地质学院学报,14(2):33 − 46. Wang C S,Hu C Z,Wu R Z,et al.,1987. Significance of the discovery of Chasang-Chabu rift in Northern Xizang (Tibet)[J]. Journal of Chengdu College of Geology,14(2):33 − 46 (in Chinese with English abstract).
[69] 王成善, 胡承祖, 吴瑞忠, 等, 1987. 西藏北部查桑−茶布裂谷的发现及其地质意义[J]. 成都地质学院学报, 14(2): 33 − 46. Wang M,Li C,Zeng X W,et al.,2019. Petrogenesis of the southern Qiangtang mafic dykes,Tibet:Link to a late Paleozoic mantle plume on the northern margin of Gondwana?[J]. GSA Bulletin,131(11-12):1907 − 1919.
[70] Wang Z W,Li W P,Wang J,et al.,2022. Controls on organic matter accumulation in marine mudstones from the Lower Permian Zhanjin Formation of the Qiangtang Basin (Tibet),eastern Tethys[J]. Marine and Petroleum Geology,138:105556.
[71] Wilson J L,1975. Carbonate facies in geologic history[M].New York: Springer-Verlag.
[72] 吴福元,万博,赵亮,等,2020. 特提斯地球动力学[J]. 岩石学报,36(6):1627 − 1674. Wu F Y,Wan B,Zhao L,et al.,2020. Tethyan geodynamics[J]. Acta Petrologica Sinica 36,1627 − 1674 (in Chinese with English abstract).
[73] 武桂春,姚建新,纪占胜,2009. 西藏北羌塘中部地区晚石炭的蜓类动物群[J]. 地质通报,28(9):1276 − 1280. Wu G Z,Yao J X,Ji Z S,2009. The Late Carboniferous Fusulinids in the central part of northern Qiangtang,Tibet,China[J]. Geological Bulletin of China,28(9):1276 − 1280 (in Chinese with English abstract).
[74] 吴瑞忠,蓝伯龙,1990. 西藏西北部晚二叠世地层新资料[J]. 地层学杂志, 14(3):216 − 221. Wu R Z,Lan B L,1990. Recent information on the Upper Permian rocks of Northwest Xizang[J]. Journal of Stratigraphy, 14(3):216 − 221 (in Chinese with English abstract).
[75] 吴瑞忠, 蓝伯龙, 1990. 西藏西北部晚二叠世地层新资料[J]. 地层学杂志, 14(3): 216 − 221. Xu H P,Zhang Y,Yuan D,et al.,2022. Quantitative palaeobiogeography of the Kungurian–Roadian brachiopod faunas in the Tethys:Implications of allometric drifting of Cimmerian blocks and opening of the Meso-Tethys Ocean[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 601:111078.
[76] Xu W,Dong Y S,Zhang X Z,et al.,2016. Petrogenesis of high-Ti mafic dykes from Southern Qiangtang,Tibet:Implications for a ca. 290 Ma large igneous province related to the early Permian rifting of Gondwana[J]. Gondwana Research, 36:410 − 422.
[77] 许志琴,杨经绥,侯增谦,等,2016. 青藏高原大陆动力学研究若干进展[J]. 中国地质,43(1):1 − 42. Xu Z Q,Yang J S,Hou Z Q,et al.,2016. The progress in the study of continental dynamics of the Tibetan Plateau[J]. Geology in China,43(1):1 − 42 (in Chinese with English abstract).
[78] 许志琴, 杨经绥, 侯增谦, 等, 2016. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 43(1): 1 − 42. Yin A,Harrison T M,2000. Geologic evolution of The Himalayan-Tibetan Orogen [J]. Annual Review of Earth and Planetary Sciences,28:211 − 280.
[79] Yuan D X,Zhang Y C,Qiao F,et al.,2022. A new late Kungurian (Cisuralian,Permian) conodont and fusuline fauna from the South Qiangtang Block in Tibet and their implications for correlation and paleobiogeography[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,589:110822.
[80] Zanchi A,Fürsich F T,Santosh M,2015. Cimmerian terranes:Preface[J]. Journal of Asian Earth Sciences,102:1 − 3.
[81] Zhai Q G,Jahn B M,Su L,et al.,2013. SHRIMP zircon U–Pb geochronology,geochemistry and Sr–Nd–Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane,northern Tibet and geodynamic implications[J]. Lithos,174:28 − 43.
[82] Zhang Y J,An X Y,Liu S L,et al.,2023. The sedimentary facies and tectono-stratigraphic successions of the Carboniferous–Lower Permian deposits in western South Qiangtang Block:Implication for a rifting process on the Gondwana margin[J]. Palaeoworld,33(3):706-723. doi: 10.1016/j.palwor.2023.07.002
[83] Zhang Y C,Shen S Z,Shi G R,et al.,2012. Tectonic evolution of the Qiangtang Block,northern Tibet during the Late Cisuralian (Late Early Permian):Evidence from fusuline fossil records[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,350-352:139 − 148.
[84] Zhang Y X,Zhang K J,2017. Early Permian Qiangtang flood basalts,northern Tibet,China:A mantle plume that disintegrated northern Gondwana?[J]. Gondwana Research, 44:96 − 108.
[85] Zhang Y C,Shi G R,Shen S Z,2013. A review of Permian stratigraphy,palaeobiogeography and palaeogeography of the Qinghai–Tibet Plateau[J]. Gondwana Research. 24(1):55 − 76.
[86] Zhang Y C,Shen S Z,Zhai Q G,et al.,2016. Discovery of a Sphaeroschwagerina fusuline fauna from the Raggyorcaka Lake area,northern Tibet:implications for the origin of the Qiangtang Metamorphic Belt[J]. Geological Magazine,153(3):537 − 543.
[87] 张以春,张予杰,袁东勋,等,2019. 班公湖−怒江洋打开时间的地层古生物约束[J]. 岩石学报,35(10):3083 − 3096. Zhang Y C,Zhang Y J,Yuan D X,et al.,2019. Stratigraphic and paleontological constraints on the opening time of the Bangong-Nujiang Ocean[J]. Acta Petrologica Sinica,35(10):3080 − 3096 (in Chinese with English abstract).
[88] 张予杰,张以春,王冬兵,等,2021. 青藏高原中南部前寒武系及古生界岩石地层组成和时代特征[J]. 地质通报,40(11):1814 − 1835. Zhang Y J,Zhang Y C,Wang D B,et al.,2021. Precambrian-Paleozoic strata and their ages in the central and southern Tibetan Plateau[J]. Geological Bulletin of China,40(11):1814 − 1835 (in Chinese with English abstract).
[89] 张予杰, 张以春, 王冬兵, 等, 2021. 青藏高原中南部前寒武系及古生界岩石地层组成和时代特征[J]. 地质通报, 40(11): 1814 − 1835. Zhang Y X,Li Z W,Zhu L D,et al.,2016. Newly discovered eclogites from the Bangong Meso – Tethyan suture zone (Gaize,central Tibet,western China):mineralogy,geochemistry,geochronology,and tectonic implications[J]. International Geology Review,58(5):574 − 587.
[90] Zhou Y N,Cheng X,Yu L,et al.,2016. Paleomagnetic study on the Triassic rocks from the Lhasa Terrane,Tibet,and its paleogeographic implications[J]. Journal of Asian Earth Sciences,121:108 − 119.
[91] Zhu D C,Zhao Z D,Niu Y L,et al.,2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research,23(4):1429 − 1454. DOI: 10.1016/j.jseaes.2016.02.006
[92] Zhu R X,Zhao P,Zhao L,2022. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Scientia Sinica(Terrae),65(1):1 − 24. DOI: 10.1016/j.gr.2012.02.002
[93] 沈树忠,张以春,袁东勋,等. 2024. 青藏高原及其周边二叠纪综合地层、生物群以及古地理和古气候演化[J]. 中国科学:地球科学,54(4):1125 − 1170. [94] 朱日祥,赵盼,赵亮,2022. 新特提斯洋演化与动力过程[J]. 中国科学:地球科学, 52(1):1 − 25. Zhu R X, Zhao P, Zhao L, 2022. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Scientia Sinica(Terrae), 65(1): 1 − 24.