In-situ sulfur isotope characteristics of pyrite and chalcopyrite from the Naruo porphyry Cu (Au) deposit in Xizang: Implications for geological significance
-
摘要:
拿若矿床是目前西藏多龙矿集区内第三大斑岩型铜(金)矿床,前人针对成岩成矿地质年代学、成矿地质背景等开展了大量研究,但对于其成矿物质硫的来源等成矿机制尚不明确。本文针对拿若矿床中广泛发育的黄铁矿和黄铜矿,利用镜下鉴定、LA-MC-ICP-MS同位素测试分析等方法,开展了矿相学特征和同位素地球化学研究,以期查明其原位硫同位素特征,揭示其矿床成因并指示找矿勘查。研究结果显示,黄铁矿主要分为三类,从早到晚分别为:Py-Ⅰ→Py-Ⅲ→Py-Ⅱ→Py-Ⅲ,除Py-Ⅰ外,其他均与黄铜矿的形成密切相关。黄铁矿δ34S值介于-4.05‰~3.49‰(均值为-0.2‰,n=53),黄铜矿表现出更小的δ34S值特征,即δ34S=-7.24‰~0.32‰(均值为-2.44‰,n=24),测试结果与矿集区内其他矿床数值相近。计算所得成矿流体总硫值(δ34SΣ)为-3.06‰,表明硫的来源主要与岩浆硫有关。硫同位素黄铁矿–黄铜矿矿物对显示成矿温度介于255℃~590℃之间,成矿中心温度为320℃,证实了中温成矿环境。硫同位素空间分布特征表明,从矿化中心到外围,δ34S值呈逐渐降低的趋势,这与某些碱性斑岩型矿床明显不同。本次研究认为,拿若矿床的成矿主要与中温环境和远端SO2的脱气作用有关,该特征可作为拿若矿床重要的找矿勘查指示标志。本次研究丰富了对于拿若矿床硫的来源和成矿温度等成矿机制的认识,为下一步成矿理论和找矿勘查研究奠定了基础。
Abstract:The Naruo deposit is the third largest porphyry Cu (Au) deposit within the Duolong ore district in Xizang. Previous studies have extensively investigated the petrogenesis, metallogenetic geological chronology, and metallogenic geological background. However, the ore-forming mechanism, including the source of sulfur, remains unclear. This study focuses on the widespread occurrence of pyrite and chalcopyrite in the Naruo ore deposit. Through methods such as optical microscopy identification and LA-MC-ICP-MS isotopic analysis, mineralogical characteristics and isotopic geochemistry were investigated. The aim is to elucidate the in-situ sulfur isotope characteristics, reveal the ore genesis of the deposit, and provide guidance for mineral exploration. Based on microscopic observations, three types of pyrite are categorized, from earlier to later: Py-Ⅰ→Py-Ⅲ→Py-Ⅱ→Py-Ⅲ. Except for Py-Ⅰ, all others are closely associated with the occurrence of chalcopyrite. Pyrite exhibits δ34S values ranging from -4.05‰ to 3.49‰ (with a mean of -0.2 ‰, n=53), while chalcopyrite demonstrates smaller δ34S values, ranging from -7.24‰ to 0.32‰ (with a mean of -2.44‰, n=24). These test results closely approximate values found in other deposits within the ore cluster. The total sulfur value of the ore-forming fluid (δ34SΣ) is -3.06‰, indicating that the source of sulfur is primarily associated with magmatic sulfur. The sulfur isotope mineral pairs of pyrite-chalcopyrite indicate ore-forming temperatures ranging from 255℃ to 590℃, with a central ore-forming temperature of 320℃, revealing a mesothermal ore-forming environment in the ore deposit center. The spatial distribution patterns of sulfur isotopes indicate a gradual decrease in δ34S values from the mineralization center to the periphery, which is notably different from some alkaline porphyry-type deposits. This study suggests that such variation is attributed mainly to ore formation in a mesothermal environment and the degassing of remote SO2, thus serving as crucial exploration indicators for the Naruo deposit. This study has enriched our understanding of the sources of sulfur and ore-forming temperatures, among other ore-forming mechanisms, in the Naruo ore deposit. It lays the foundation for further research in ore-forming theories and mineral exploration.
-
Keywords:
- pyrite /
- chalcopyrite /
- in-situ S isotope /
- Naruo deposit /
- Duolong ore district /
- Xizang
-
-
图 2 拿若斑岩型铜矿床地质简图(修改自方向等,2014)
Figure 2. Sketch map of Naruo porphyry copper deposit (modified from Fang et al., 2014)
图 3 拿若矿床典型矿石组构显微照片
a、b. 结晶结构:黄铁矿、黄铜矿粒状结晶结构,可见自形晶黄铁矿发生断裂被黄铜矿充填;c. 交代结构:沿裂隙充填的黄铜矿边缘被铜蓝交代;d. 交代结构:黄铁矿被闪锌矿、方铅矿充填交代,可见港湾状交代结构,后期黄铜矿以包裹体和交代矿物边缘相方式形成;e. 固溶体分离结构:黄铜矿以固溶体分离方式存在于闪锌矿边缘;f. 压碎结构:早期黄铁矿受外力作用发生碎裂,后期黄铜矿沿裂隙充填发育;Py—黄铁矿,Ccp—黄铜矿,Cv—铜蓝,Sp—闪锌矿,Gn—方铅矿
Figure 3. Micrographs of typical ore texture from Naruo deposit
图 4 拿若矿床不同类型黄铁矿显微镜下照片
a. Py-Ⅰ期早期黄铁矿颗粒,呈椭圆状,发育于岩体基质中,受后期热液影响内部多发育硅酸盐矿物、黄铜矿等的包裹体,从内到外发育三期环带,S同位素先降低后升高;b. Py-Ⅱa期含矿物包裹体的热液成因粒状黄铁矿,与黄铜矿脉伴生;c. Py-Ⅱb期含矿物包裹体热液成因脉状黄铁矿,包裹体颗粒较大,主要为硅酸盐矿物、黄铜矿、硫砷铜矿等;d. Py-Ⅲa表面光滑黄铁矿脉,与黄铜矿共生;e. Py-Ⅲb表面光滑黄铁矿颗粒,呈半自形—他形粒状,裂隙被后期黄铜矿脉填充,S同位素多呈正值;f. 热液黄铁矿,发育于基质或围岩中,右下角黄铁矿可见3阶段,早期为光滑黄铁矿,中期为麻点+含矿物包裹体黄铁矿,晚期为光滑黄铁矿,左上黄铁矿中心发育为麻点+含矿物包裹体黄铁矿,外围发育光滑黄铁矿,总体从中心到外围S同位素逐渐升高;Qtz—石英,Py—黄铁矿,Ccp—黄铜矿,Eng—硫砷铜矿
Figure 4. Microscopic photos of different types of pyrite in Naruo deposit
图 7 多龙矿集区硫同位素值分布图(修改自高轲等, 2023)
图中拿若已有硫同位素数据引自吕丽娜, 2012;高轲等, 2023;铁格隆南数据引自王艺云等,2017,2018;多不杂数据引自李金祥,2008;肖剑波,2012;波龙数据引自周玉等,2013;郭硕,2013;拿顿数据引自王松等,2017;色那、尕尔勤、铁格山数据引自吕丽娜,2012;斑岩型铜矿床数据引自Stefanova et al., 2023;地幔硫范围引自Chaussidon et al., 1989
Figure 7. Distribution of sulfur isotope values in the Duolong ore district (modified from Gao et al., 2023)
表 1 拿若矿床金属硫化物原位S同位素测试结果及矿物对温度计
Table 1 In-situ S isotope test results and mineral pair thermometers of sulfides in the Naruo deposit
测试样品编号 δ34S/‰ 2σ 矿物类型 温度/℃ 测试样品编号 δ34S/‰ 2σ 矿物
类型0701-74.2-01-2 0.90 0.20 Py-Ⅱb 1504 -495.1-053.49 0.21 Py-Ⅲb 0701-74.2-01-3 0.57 0.27 Py-Ⅱb 1504 -495.1-062.35 0.12 Py-Ⅲb 0701-74.2-02-1 1.94 0.16 Py-Ⅱb 1504 -495.1-072.52 0.13 Py-Ⅲb 0701-74.2-02-2 0.74 0.20 Py-Ⅱb 1504 -495.1-082.03 0.12 Py-Ⅲb 0701-74.2-03-1 -0.84 0.09 Py-Ⅱa 0801-404.63-03 -0.69 0.09 Py-Ⅲa 0701-148.7-01 0.66 0.09 Py-Ⅲa 0801-593.97-03 -1.81 0.11 Py-Ⅱa 0701-217.4-01-1 -0.17 0.14 Py-Ⅱb 2301 -132.3-01-3.70 0.12 Py-Ⅱb 0701-217.4-01-2 -0.71 0.22 Py-Ⅱb 2301 -132.3-03-0.59 0.09 Py-Ⅱa 0701-411.3-01 0.37 0.08 Py-Ⅱb 2301 -257.6-010.31 0.14 Py-Ⅱa 0701-411.3-02 -0.38 0.08 Py-Ⅱb 2301 -257.6-030.53 0.11 Py-Ⅱb 0701-411.3-03 -0.27 0.09 Py-Ⅱb 2301 -257.6-04-4.05 0.10 Py-Ⅱb 1504 -158.5-01-0.41 0.13 Py-Ⅰ 2301 -400.7-010.56 0.09 Py-Ⅱb 1504 -158.5-02-0.99 0.09 Py-Ⅰ 2301 -400.7-02-1.24 0.08 Py-Ⅱb 1504 -158.5-03-2.21 0.10 Py-Ⅰ 2301 -400.7-03-2.26 0.08 Py-Ⅱa 0001-81.42-02 -0.49 0.12 Py-Ⅲa 437 0001-81.42-03 -1.38 0.14 Ccp 0001-155.4-01 1.05 0.09 Py-Ⅱa 320 0001-155.4-02 -0.23 0.22 Ccp 0001-400.5-02 1.94 0.10 Py-Ⅲa 255 0001-400.5-03 0.32 0.18 Ccp 0701-880.4-02 0.31 0.13 Py-Ⅱa 420 0701-880.4-03 -1.37 0.14 Ccp 0701-880.4-04 -0.44 0.10 Py-Ⅲa 264 0701-880.4-05 -1.25 0.15 Ccp 0801-593.97-02 -1.14 0.12 Py-Ⅲa 590 0801-593.97-01 -1.74 0.14 Ccp 0001-81.42-01 0.03 0.09 Py-Ⅲa 0001-31.2-01 -1.76 0.13 Ccp 0001-155.4-03 -0.73 0.18 Py-Ⅱb 0001-81.42-04 -1.33 0.15 Ccp 0001-280.6-01 1.09 0.10 Py-Ⅱb 0001-81.42-05 -1.38 0.13 Ccp 0001-280.6-02 -2.64 0.15 Py-Ⅱb 0001-155.4-04 0.26 0.53 Ccp 0701-669.5-01 -0.05 0.08 Py-Ⅱb 0001-400.5-06 -6.24 0.97 Ccp 0701-669.5-03 -1.14 0.13 Py-Ⅱa 0701-148.7-02 -2.87 0.14 Ccp 0701-669.5-04 -1.23 0.13 Py-Ⅱa 0701-411.3-04 -0.56 0.20 Ccp 0701-669.5-05 -1.01 0.11 Py-Ⅱa 0701-669.5-02 -2.27 0.14 Ccp 0701-880.4-01 0.04 0.08 Py-Ⅱa 0801-60.6-01 -3.67 0.15 Ccp 0801-60.6-03 -1.20 0.09 Py-Ⅲa 0801-60.6-02 -4.64 0.15 Ccp 0801-152.45-01 -2.92 0.16 Py-Ⅱb 0801-152.45-02 -2.37 0.18 Ccp 0801-196.15-01 -0.63 0.11 Py-Ⅱb 0801-196.15-02 -7.24 0.15 Ccp 0801-257.2-01 0.71 0.09 Py-Ⅱa 0801-257.2-02 -3.21 0.17 Ccp 0801-404.63-01 -0.77 0.12 Py-Ⅲa 0801-404.63-02 -1.35 0.22 Ccp 0001-400.5-01 2.18 0.09 Py-Ⅲa 0801-593.97-04 -2.35 0.16 Ccp 0001-400.5-04 -1.13 0.09 Py-Ⅱa 0801-593.97-05 -3.20 0.15 Ccp 0001-400.5-05 -0.51 0.13 Py-Ⅱa 2301 -132.3-02-4.06 0.20 Ccp 0701-74.2-01-1 1.37 0.29 Py-Ⅱb 2301 -257.6-02-4.69 0.20 Ccp 1504 -158.5-04-0.21 0.10 Py-Ⅰ 注:黄铁矿–黄铜矿S同位素矿物温度计(t)计算方法见公式(1),含温度的单元格左右两侧的黄铁矿–黄铜矿即为计算该温度的矿物对。 -
[1] Alonso-Azcarate J,Roads M,Fernadez-Diaz L,et al.,2001. Causes of variation in crystal morphology in metamorphogenic pyrite deposits of the Cameros Basin (N Spain) [J]. Geological Journal,36:159 − 170. DOI: 10.1002/gj.889
[2] 白荣龙,2016. 西藏多龙矿集区岩浆岩地球化学特征及成因研究[D]. 成都:成都理工大学:1 − 75. Bai R L,2016. Geochemical characteristics and genesis of magmatic rocks for Duolong ore concentrated area in Tibet [D]. Chengdu:Chengdu University of technology:1 − 75 (in Chinese with English abstract).
[3] Chaussidon M,Albarede F,Sheppard S M F,1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions[J]. Earth and Planetary Science Letters,92(2):144 − 156. DOI: 10.1016/0012-821X(89)90042-3
[4] Chen Y,Fan Y,Zhou T F,et al.,2020. Pyrite textures and compositions in Jiangshan gold deposit, Bengbu Uplift, southeastern North China Craton: Implications for ore genesis[J]. Ore Geology Rviews,122:103512.
[5] Chinnasamy S S,Mishra B,2013. Greenstone metamorphism,hydrothermal alteration,and gold mineralization in the genetic context of the granodiorite-hosted gold deposit at Jonnagiri,Eastern Dharwar Craton,India[J]. Economic Geology,108(5):1015 − 1036 . DOI: 10.2113/econgeo.108.5.1015
[6] Craig J R,Vokes F M,Solberg T N,1998. Pyrite:physical and chemical textures[J]. Mineralium Deposita,34:82 − 101. DOI: 10.1007/s001260050187.
[7] Crowe D E,Vaughan R G,1996. Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34S/32S ratios[J]. American Mineralogist,81(1-2):187 − 193. DOI: 10.2138/am-1996-1-223
[8] 丁帅,2014. 西藏改则县拿若铜(金)矿地质特征研究[D]. 成都理工大学:1 − 61. Ding S,2014. The study of geological characteristics of Naruo Cu (Au)deposit in Gaize,Tibet [D]. Chengdu:Chengdu University of Technology:1 − 61 (in Chinese with English abstract).
[9] 方向,唐菊兴,李彦波,等,2014. 西藏多龙矿集区拿若铜(金)矿床成矿元素空间分布规律及地球化学勘查模型[J]. 中国地质,41(3):936 − 950. DOI: 10.3969/j.issn.1000-3657.2014.03.019 Fang X,Tang J X,Li Y B,et al.,2014. Metallogenic element spatial distribution of the Naruo copper (gold) deposit in the Duolong ore concentration area of Tibet and its geochemical exploration model[J]. Geology in China,41(3):936 − 950 (in Chinese with English abstract). DOI: 10.3969/j.issn.1000-3657.2014.03.019
[10] Franchini M,McFarlane C,Maydagán L,et al.,. 2015. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit,Catamarca,Argentina:textural features and metal zoning at the porphyry to epithermal transition[J]. Ore Geology Reviews, 66:366 − 387.
[11] 傅恒,韩建辉,孙煜新,等,2024. 特提斯造山带[J]. 沉积与特提斯地质,44(1):100 − 133. Fu H,Han J H,Sun Y X,et al.,2024. Tethys orogenic belt[J]. Sedimentary Geology and Tethyan Geology,44(1):100 − 133 (in Chinese with English abstract).
[12] 高轲,多吉,唐菊兴,等,2016a. 西藏多龙矿集区拿若铜(金)矿床蚀变特征[J]. 矿物岩石地球化学通报,35(6):1226 − 1237. Gao K,Duo J,Tang J X,et al.,2016a. Alteration of Naruo porphyry Cu (Au) deposit in the Duolong ore-concentration area,Tibet[J]. Bulletin of Mineralogy,Petrology and Geochemistry,35(6):1226 − 1237 (in Chinese with English abstract).
[13] 高轲,多吉,唐菊兴,等,2017a. 西藏拿若铜(金)矿床隐爆角砾岩锆石U-Pb年代学及地球化学特征[J]. 中国地质,44(3):618 − 619. Gao K,Duo J,Tang J X,et al.,2017a. Geochronology and geochemistry of cryptoexplosive breccia from the Naruo Cu (Au) deposit,Tibet[J]. Geology in China,44(3):618 − 619 (in Chinese with English abstract).
[14] 高轲,宋扬,刘治博,等,2024. 西藏拿若铜(金)矿床隐爆角砾岩对成矿时代的约束[J]. 中国地质,51(2):385 − 398. DOI: 10.12029/gc20201104002 Gao K,Song Y,Liu Z B,et al.,2024. Constraints on metallogenic age from cryptoexplosive breccia in Naruo Cu(Au) deposit,Xizang[J]. Geology in China,51(2):385 − 398(in Chinese with English abstract). DOI: 10.12029/gc20201104002
[15] 高轲,宋扬,刘治博,等,2023. 西藏拿若铜 (金) 矿床硫,铅同位素组成及成矿物质来源[J]. 沉积与特提斯地质, 43(1):145 − 155. Gao K,Song Y,Liu Z B,et al.,2023. Sulfur and lead isotope composition and tracing for sources of ore-forming materials in the Naruo Cu(Au) deposit,in Tibet[J]. Sedimentary Geology and Tethyan Geology, 43(1):145 − 155 (in Chinese with English abstract).
[16] 高轲,唐菊兴,宋扬,等,2016b. 西藏拿若铜(金)矿床隐爆角砾岩流体包裹体研究[J]. 地质与勘探, 52(5):815 − 825. Gao K,Tang J X,Song Y,et al.,2016b. Fluid inclusion study of the cryptoexplosive breccias in the Naruo Cu(Au) deposit of Tibet[J]. Geology and Exploration, 52(5):815 − 825 (in Chinese with English abstract).
[17] 高轲,唐菊兴,宋扬,等,2017b. 西藏拿若隐爆角砾岩中岩浆岩成因: 来自锆石Hf同位素证据[J]. 地质与勘探, 53(2):207 − 216. Gao K,Tang J X,Song Y,et al.,2017b. Genesis of magmatic rocks of cryptoexplosive breccia in the Naruo deposit of Tibet:Evidence from zircon Hf isotope[J]. Geology and Exploration, 53(2):207 − 216 (in Chinese with English abstract).
[18] 郭硕,2013. 西藏改则县多龙矿集区矿床模型与应用[D]. 北京:中国地质大学(北京):1 − 114. Guo S,2013. Mineral deposit model of the Duolong deposit cluster in Gaize county,Tibet and its application [D]. Beijing:China University of Geosciences (Beijing):1 − 114 (in Chinese with English abstract).
[19] Gustafson L B,Hunt J P,1975. The porphyry copper deposit at El Salvador,Chile[J]. Economic Geology,70(5):857 − 912. DOI: 10.2113/gsecongeo.70.5.857
[20] Gustafson L B,Quiroga G J,1995. Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador,Chile[J]. Economic Geology,90(1):2 − 16. DOI: 10.2113/gsecongeo.90.1.2
[21] Hou Z Q,Ma H W,Zaw K,et al.,2003. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet[J]. Economic Geology & the Bulletin of the Society of Economic Geologists,98(1):125 − 145.
[22] Kajiwara Y,Krouse H R,1971. Sulfur isotope partitioning in metallic sulfide systems[J]. Canadian Journal of Earth Sciences,8(11):1397 − 1408. DOI: 10.1139/e71-129
[23] 雷传扬,吴建亮,尹显科,等,2018. 班公湖–怒江缝合带西段沙木罗组地层中闪长玢岩脉的发现及其地质意义[J]. 矿物岩石地球化学通报, 37(2):250 − 259. Lei C Y,Wu J L,Yin X K,et al.,2018. New discovery of the diorite porphyry dyke in the Shamuluo Formation in western segment of the Bangongco-Nujiang suture zone and its geological significance[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 37(2):250 − 259 (in Chinese with English abstract).
[24] 冷秋锋,李文昌,戴成龙,等,2023. 西藏那茶淌铅锌矿床S-Pb同位素组成及其示踪成矿物质来源[J]. 沉积与特提斯地质,43(1):168 − 179. DOI: 10.3969/j.issn.1009-3850.2023.01.013 Leng Q F,Li W C,Dai C L,et al.,2023. Sulfur and lead isotope composition tracing for the ore-forming material source of Nachatang Pb-Zn deposit in Tibet[J]. Sedimentary Geology and Tethyan Geology,43(1):168 − 179 (in Chinese with English abstract). DOI: 10.3969/j.issn.1009-3850.2023.01.013
[25] 李光明,段志明,刘波,等,2011. 西藏班公湖−怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义[J]. 地质通报,30(8):1256 − 1260. DOI: 10.3969/j.issn.1671-2552.2011.08.012 Li G M,Duan Z M,Liu B,et al.,2011. The discovery of Jurassic accretionary complexes in Duolong area,northern Bangong Co-Nujiang suture zone,Tibet,and its geologic significance[J]. Geological Bulletin of China,30(8):1256 − 1260 (in Chinese with English abstract). DOI: 10.3969/j.issn.1671-2552.2011.08.012
[26] 李金祥,2008. 班公湖带多不杂超大型富金斑岩铜矿床的成岩成矿年代学、岩石学及高氧化岩浆−流体−成矿作用[D]. 北京:中国科学院地质与地球物理研究所:1 − 224. Li J X,2008. Geochronology,petrology and metallogeneses of high oxidized magma-hydrothermal fluid of Duobuza gold-rich porphyry copper deposit in Bangonghu belt,Northern Tibet [D]. Beijing:Institute of Geology and Geophysics,Graduate University of Chinese Academy of Sciences:1 − 224 (in Chinese with English abstract).
[27] Li R C,Xia X P,Chen H Y,et al.,2020. A potential new Chalcopyrite reference material for Secondary Ion Mass Spectrometry sulfur isotope ratio analysis[J]. Geostandards and Geoanalytical Research,44(3):485 − 500. DOI: 10.1111/ggr.12330
[28] Lin B,Tang J X,Chen Y C,et al.,2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district,Tibet[J]. Gondwana Research,66:168 − 182. DOI: 10.1016/j.gr.2018.07.009
[29] Lin B,Tang J X,Tang P,et al.,2024,Multipulsed magmatism and duration of the hydrothermal system of the giant Jiama porphyry Cu system,Tibet,China[J]. Economic Geology,119(1):201 − 217.
[30] 吕丽娜,2012. 西藏班公湖−怒江成矿带西段富铁与铜(金)矿床模型[D]. 北京:中国地质科学院:1 − 219. Lü L N,2012. Metallogenic model of rich iron and copper (gold) deposits in western part of Bangong Co-Nujiang metallogenie belt,Tibet [D]. Beijing:China Academy of Geosciences:1 − 219 (in Chinese with English abstract).
[31] 马安林,胡修棉,2021. 沉积记录约束班公湖−怒江缝合带东巧蛇绿岩的仰冲过程[J]. 沉积与特提斯地质, 41(2):163 − 175. Ma A L,Hu X M,2021. Constraining the obduction process of the Dongqiao ophiolite in the Bangongco-Nujiang suture zone by the sedimentary record[J]. Sedimentary Geology and Tethyan Geology, 41(2):163 − 175 (in Chinese with English abstract).
[32] Madyagan L,Franchini M,Lentz D R,et al.,2013. Sulfide composition and isotopic signature of the altar Cu–Au deposit,Argentina:Constraints on the evolution of the porphyry-epithermal system[J]. Can Mineral,51:813 − 840. DOI: 10.3749/canmin.51.6.813
[33] Ohmoto H,1997. Applications of sulfur and carbon isotopes in ore deposit research[J]. Geochemistry of Hydrothermal Ore Deposits:517 − 611.
[34] 潘桂棠,王立全,尹福光,等,2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质, 42(2):151 − 175. Pan G T,Wang L Q,Yin F G,et al.,2022. Researches on geological-tectonic evolution of Tibetan Plateau:A review,recent advances,and directions in the future[J]. Sedimentary Geology and Tethyan Geology, 42(2):151 − 175 (in Chinese with English abstract).
[35] Pinckney D M,Rafter T A,1972. Fractionation of sulfur isotopes during ore deposition in the Upper Mississippi Valley zinc-lead district[J]. Economic Geology,67(3):315 − 328. DOI: 10.2113/gsecongeo.67.3.315
[36] 任纪舜,肖黎薇,2004. 1∶25万地质填图进一步揭开了青藏高原大地构造的神秘面纱[J]. 地质通报,23(1):1 − 11. DOI: 10.3969/j.issn.1671-2552.2004.01.006 Ren J S,Xiao L W,2004. Lifting the mysterious veil of the tectonics of the Qinghai-Tibet Plateau by 1∶250000 geological mapping[J]. Geological Bulletin of China,23(1):1 − 11 (in Chinese with English abstract). DOI: 10.3969/j.issn.1671-2552.2004.01.006
[37] Rye R O,Bethke P M,Wasserman M D,1992. The stable isotope geochemistry of acid sulfate alteration[J]. Economic Geology,87(2):225 − 262. DOI: 10.2113/gsecongeo.87.2.225
[38] Stefanova E,Georgiev S,Peytcheva I,et al.,2023. Sulfide trace element signatures and S-and Pb-isotope geochemistry of porphyry copper and epithermal gold-base metal mineralization in the Elatsite–Chelopech Ore Field (Bulgaria)[J]. Minerals,13(5):630. DOI: 10.3390/min13050630
[39] 孙嘉,2015. 西藏多龙矿集区岩浆成因与成矿作用研究[D]. 北京:中国地质大学(北京):1 − 198. Sun J,2015. Magmatism and metallogenesis at Duolong ore district,Tibet [D]. Beijing:China University of Geosciences (Beijing):1 − 198 (in Chinese with English abstract).
[40] 孙嘉,段先哲,李玉彬,2021. 西藏多龙矿集区铜金流体演化过程探 讨——来自硫同位素的证据[J]. 矿床地质,40(5):1085 − 1099. Sun J,Duan X Z,Li Y B,2021. Investigation of fluid evolution in Duolong copper-gold ore district,Tibet:Evidence from sulfur isotope[J]. Mineral Deposits,40(5):1085 − 1099 (in Chinese with English abstract).
[41] Sun M,Tang J X,Klemd R,et al.,2024,The formation of a giant post-collision porphyry copper system: A case study of the Jiama deposit, Tibet[J]. Geological Society of America Bulletin,136(3-4),1675 − 1688.
[42] 唐菊兴,宋扬,王勤,等,2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩−浅成低温热液型矿床[J]. 地球学报,37(6):663 − 690. DOI: 10.3975/cagsb.2016.06.03 Tang J X,Song Y,Wang Q,et al.,2016. Geological characteristics and exploration model of the Tiegelongnan Cu (Au-Ag) deposit:The first ten million tons metal resources of a porphyry-epithermal deposit in Tibet[J]. Acta Geoscientica Sinica,37(6):663 − 690 (in Chinese with English abstract). DOI: 10.3975/cagsb.2016.06.03
[43] 唐菊兴,孙兴国,丁帅,等,2014. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床[J]. 地球学报,35(1):6 − 10. Tang J X,Sun X G,Ding S,et al.,2014. Discovery of the epithermal deposit of Cu (Au-Ag) in the Duolong ore concentrating area,Tibet[J]. Acta Geoscientica Sinica,35(1):6 − 10 (in Chinese with English abstract).
[44] 唐菊兴,王勤,杨欢欢,等,2017. 西藏斑岩−矽卡岩−浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J]. 地球学报,38(5):571 − 613. Tang J X,Wang Q,Yang H H,et al.,2017. Mineralization,exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet[J]. Acta Geoscientica Sinica,38(5):571 − 613 (in Chinese with English abstract).
[45] 王勤,唐菊兴,陈毓川,等,2019. 西藏多龙超大型铜(金)矿集区成矿模式与找矿方向[J]. 岩石学报, 35(3):879 − 896. Wang Q,Tang J X,Chen Y C,et al.,2019. The metallogenic model and prospecting direction for the Duolong super large copper (gold) district,Tibet[J]. Acta Petrologica Sinica, 35(3):879 − 896 (in Chinese with English abstract).
[46] 王松,赵元艺,汪傲,等,2017. 西藏拿顿铜(金)矿床岩矿相学、流体包裹体和地球化学特征与成矿作用研究[J]. 地质学报, 91(7):1565 − 1588. Wang S,Zhao Y Y,Wang A,et al.,2017. The study of facieology-mineragraphy,fluid inclusions,and geochemical characteristics and mineralization in Nadun Cu (Au) deposit,Tibet[J]. Acta Geologica Sinica, 91(7):1565 − 1588 (in Chinese with English abstract).
[47] 王艺云,2018. 西藏铁格隆南超大型铜(金、银)矿床成因——矿物学、蚀变与成矿[D]. 成都:成都理工大学:1 − 154. Wang Y Y,2018. Genesis of Tiegelongnan super-large copper (gold and silver) deposit in Tibet,China-mineralogy,alteration and mineralization[D]. Chengdu:Chengdu University of Technology:1 − 154 (in Chinese with English abstract).
[48] 王艺云,唐菊兴,宋扬,等,2017. 西藏铁格隆南超大型Cu(Au、Ag)矿床S、Pb同位素地球化学研究[J]. 地球学报, 38(5):627 − 637. Wang Y Y,Tang J X,Song Y,et al.,2017. Geochemical characteristics of sulfur and lead isotopes from the superlarge Tiegelongnan copper (gold-silver) deposit,Tibet[J]. Acta Geoscientica Sinica, 38(5):627 − 637 (in Chinese with English abstract).
[49] Wilson A J,Cooke D R,Harper B J,et al.,2007. Sulfur isotopic zonation in the Cadia district,southeastern Australia:exploration significance and implications for the genesis of alkalic porphyry gold–copper deposits[J]. Mineralium Deposita,42(5):465 − 487. DOI: 10.1007/s00126-006-0071-9
[50] 肖剑波,2012. 班怒西段多不杂铜矿床成因浅析[D]. 成都:成都理工大学:1 − 59. Xiao J B,2012. Genesis of the Duobuza copper deposit in the western Bangong Co-Nujiang metallogenic belt,Tibet[D]. Chengdu:Chengdu University of Technology:1 − 59 (in Chinese with English abstract).
[51] 谢富伟,郎兴海,唐菊兴,等,2022. 西藏冈底斯成矿带成矿规律[J]. 矿床地质,41(5):952 − 974. Xie F W,Lang X H,Tang J X,et al.,2022. Metallogenic regularity of Gangdese metallogenic belt,Tibet[J]. Mineral Deposits,41(5):952 − 974 (in Chinese with English abstract).
[52] Xue Y,Campbell I,Ireland T R,et al.,2013. No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits[J]. Geology,41:791 − 794.
[53] 杨超,唐菊兴,宋俊龙,等,2015. 西藏拿若斑岩型铜(金)矿床绿泥石特征及其地质意义[J]. 地质学报,89(5):856 − 872. DOI: 10.3969/j.issn.0001-5717.2015.05.003 Yang C,Tang J X,Song J L,et al.,2015. Chlorite characteristic of the Naruo porphyry Cu (Au) deposit in Tibet and its geological significance[J]. Acta Geologica Sinica,89(5):856 − 872 (in Chinese with English abstract). DOI: 10.3969/j.issn.0001-5717.2015.05.003
[54] Yin A,Harrison T M,2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,28(1):211 − 280. DOI: 10.1146/annurev.earth.28.1.211
[55] 张静,杨艳,胡海珠,等,2009. 河南银洞沟造山型银矿床碳硫铅同位素地球化学[J]. 岩石学报,25(11):2833 − 2842. Zhang J,Yang Y,Hu H Z,et al.,2009. C-S-Pb isotope geochemistry type silver deposit in Henan province[J]. Acta Petrologica Sinica,25(11):2833 − 2842 (in Chinese with English abstract).
[56] 赵伟策,祝新友,王书来,等,2023. 云南会泽铅锌矿灯影组矿石硫、铅同位素组成及找矿意义[J]. 沉积与特提斯地质,43(1):156 − 167. DOI: 10.3969/j.issn.1009-3850.2023.01.012 Zhao W C,Zhu X Y,Wang S L,et al.,2023. Sulfur and lead isotopic compositions of ores from the Dengying Formation and their prospecting implications in the Huize Pb–Zn deposit,Yunnan Province[J]. Sedimentary Geology and Tethyan Geology,43(1):156 − 167 (in Chinese with English abstract). DOI: 10.3969/j.issn.1009-3850.2023.01.012
[57] 郑永飞,陈江峰,2000. 稳定同位素地球化学[M]. 北京:科学出版社:1 − 316. Zheng Y F,Chen J F,2000. Stable isotope geochemistry[M]. Beijing:Science Press:1 − 316 (in Chinese with English abstract).
[58] 郑永飞,傅斌,张学华,1996. 岩浆去气作用的碳硫同位素效应[J]. 地质科学,31(1):43 − 53. Zheng Y F,Fu B,Zhang X H,1996. Effects of magma degassing on the carbon and sulfur isotope compositions of igneous rocks[J]. Scientia Geologica Sinica,31(1):43 − 53 (in Chinese with English abstract).
[59] Zhou X,Fei G C,Zhou Y,et al.,2015. Chronology and crust-mantle mixing of ore-forming porphyry of the Bangongco:Evidence from zircon U-Pb age and Hf isotope of the Naruo porphyry copper-gold deposit[J]. Acta Geologica Sinica–English Edition,89(1):217 − 228. DOI: 10.1111/1755-6724.12406
[60] 周玉,多吉,温春齐,等,2013. 西藏波龙铜矿床 S,Pb 同位素地球化学特征[J]. 矿物岩石, 33(2):43 − 49. Zhou Y,Duo J,Wen C Q,et al.,2013. Geochemical characteristics of sulfur and lead isotopes from the Bolong copper deposit,Tibet[J]. J Mineral Petrol, 33(2):43 − 49 (in Chinese with English abstract).
[61] Zhu X P,Ji D,Li G M,et al.,2019. High oxidation magmatic evolution in the Naruo porphyry Cu deposit,Tibet,China[J]. Gondwana Research,76:26 − 43. DOI: 10.1016/j.gr.2019.05.006
[62] 祝向平,陈华安,刘鸿飞,等,2015. 西藏多不杂斑岩铜矿斑岩锆石U-Pb年龄、岩石地球化学特征及其成矿意义[J]. 地质学报,89(3):534 − 548. Zhu X P,Chen H A,Liu H F,et al.,2015. Zircon U-Pb ages,geochemistry of the porphyries from the Duobuza porphyry Cu-Au deposit,Tibet and their metallogenic significance[J]. Acta Geologica Sinica,89(3):534 − 548 (in Chinese with English abstract).