Sedimentary sequence and paleoclimate evolution of the Marinoan Glacier in the Daba Mountains: Evidence from petrology and geochemistry
-
摘要:
关于新元古代Marinoan冰期,全球处于一个“hard snowball”(硬壳雪球)状态还是“slush snowball”(坍塌雪球)状态,长期存在争议。大巴山地区城口凉桥剖面南沱组冰川沉积物极为发育,出露完整,是研究Marinoan期冰川沉积序列的理想载体,地球化学证据对恢复新元古代末期古气候具有重要意义。南沱组岩石学特征表明,大巴山地区南沱组主要由灰绿色、灰紫色含砾粉砂岩组成。冰碛物沉积地球化学特征揭示,该地区南沱组经历低等化学风化作用,整体处于寒冷干燥的气候环境,化学蚀变指数(CIA)、化学风化指数(CIW)、斜长石蚀变指数(PIA)等古气候指标值均存在明显的旋回变化,即灰紫色含砾质粉砂岩由底部至顶部逐渐从高值减小,灰绿色含砾质粉砂岩则自下而上从低值逐渐增加,表明南沱早期经历过多次冷暖的古气候波动。扬子地区南沱组区域对比及沉积模式表明,南沱冰期可以进一步分为早期渐冻期、中期冰冻期和晚期解冻期,气候冷暖变化主要发生在南沱早期和南沱晚期,浅水沉积区表现尤其明显。因此,大巴山地区南沱组冰川沉积序列及古气候变化证据为新元古代末期全球处于一个“slush snowball”状态的观点提供了有力支持。
-
关键词:
- 大巴山地区 /
- Marinoan冰期 /
- 沉积地球化学 /
- 冰川沉积序列 /
- 古气候演化
Abstract:There has been a long-standing debate that whether the earth was a "hard snowball" or a "slush snowball" during the Neoproterozoic Marinoan Ice Age. The glacial sediments of the Nantuo Formation from the Liangqiao section of Chengkou, in the Dabashan area, are complete with extensive development, providing an ideal target for studying the Marinoan glacial sedimentary sequence. Geochemical evidence is of great significance for reconstructing the late Neoproterozoic paleoclimate. The petrological characteristics of the Nantuo Formation show that it is predominantly composed of gray-green and gray-purple pebbly siltstone in the Daba Mountain area. The geochemical characteristics of the moraine deposits reveal that the Nantuo Formation in this area underwent low chemical weathering and was in a cold and dry climate. Paleoclimatic indicators, such as the chemical index of alteration (CIA), chemical index of weathering (CIW), and plagioclase index of alteration (PIA), exhibit clear cyclic variations. The gray-purple pebbly siltstone gradually decreases upwards from a high value in the bottom, while the gray-green pebbly siltstone gradually increases from bottom to top starting from a low value, implying multiple cold and warm paleoclimatic fluctuations in the early Nantuo period. Regional correlations and sedimentary patterns of the Nantuo Formation in the Yangtze area indicate that the Nantuo glacial period can be further divided into an early gradual freezing period, a middle frozen period, and a late thawing period. The climatic changes mainly occurred during the early and late Nantuo periods, especially in the shallow-water sedimentary areas. Therefore, evidence from the glacial sedimentary sequence and paleoclimatic variation of the Nantuo Formation supports the hypothesis that the earth was a "slush snowball" at the end of the Neoproterozoic era.
-
0. 引言
成冰期(约720~635 Ma)全球性冰川作用是地史中最极端的冰期事件(Huang et al., 2016),其中,南沱期冰川作用时间至少持续3 Myr,甚至很可能达到12 Myr(Bodiselitsch et al., 2005;兰中伍,2023)。地质和古地磁证据显示,Sturtian(717~660 Ma)和Marinoan(650~635 Ma)两次冰川时期的冰席可能已延伸到低纬度赤道地区的海平面(Hoffman et al., 1998;Hoffman and Li, 2009;Hoffman and Schrag, 2002;Kirschvink, 1992;MacDonald et al., 2010),于是一个新元古代全球性的雪球地球应运而生(Kirschvink, 1992;Hoffman et al., 1998)。雪球地球假说合理地解释了全球范围内冰碛沉积物之上随即出现的碳同位素负漂移的这套碳酸盐岩盖帽沉积(Hoffman et al., 1998);该假说还认为两次冰川时期的地球表面可能完全被封冻,导致水循环停滞、大陆风化作用减弱,(Hoffman et al., 1998;Hoffman and Schrag, 2002;Gu et al., 2019;沈洪娟等, 2020;赵思凡等,2020)。然而,近年来,雪球地球假说也受到了越来越多的冰期沉积记录的挑战,如冰碛沉积物中的薄层红色泥岩(Allen and Etienne, 2008;Allen et al., 2004;Busfield and Le Heron, 2014;Hu et al., 2011;Lang et al., 2018;Bai et al., 2020;Chen et al., 2021),波痕和丘状交错层理(Busfield and Le Heron, 2016;Le Heron, 2015;Le Heron et al., 2016),代表着暖水沉积的白云岩夹层(Lang et al., 2018;Gu et al., 2019;沈洪娟等, 2020;赵思凡等, 2020; Hood et al., 2011)以及CIA值变化(Rieu et al., 2007a;李明龙等, 2019)等,这些记录均表明“雪球地球”事件期间海洋并未完全被冰覆盖,且存在着明显的冷暖气候波动,该时期的沉积物并非全是冰川消融后的产物。而且,一些气候模型也表明冰川作用时期低纬度地区存在着开阔海域,由此提出了“坍塌雪球(slush snowball)”或中低纬度地区的“水带(water belt)”假说(Hyde et al., 2000;Peltier et al., 2007;Abbot et al., 2011;Pierrehumbert et al., 2011;Rose, 2015)。如巨蟒一样缠绕在赤道附近的“水带”气候模型解决了泛冰期海洋中生物生存之谜(Abbot et al., 2011;Johnson et al., 2017),比如神农架地区宋洛生物群(Song et al., 2023),尽管关于其赋存于南沱组(Ye et al., 2015;Hu et al., 2020;安志辉等,2014,2023;Ye et al., 2018)还是大塘坡组(旷红伟等,2017;Chen et al., 2021;李路顺等,2021)仍存有争议。近年来,海冰表面形成的冰尘坑穴和开放水体(cryoconite ryoconi ponds)被认为可能充当了全球冰川时期生物的避难所(Hoffman, 2016; Hawes et al., 2018),然而这种冰尘假说需要被地质现象所证实。
华南新元古代南华系主要发育三套冰碛岩,自下而上为长安组、古城组(铁丝坳组)和南沱组,分别对应于全球著名成冰系中的Sturtian冰期和Marinoan冰期(周传明等,2002;崔翔,2017;毛帆等,2021;Chen et al., 2021)。前人对南华系冰川沉积研究较为深入,尤其是南华系上统南沱组冰碛岩,Zhang et al.(2008)报道了南沱组底部火山灰层(654.5±3.8) Ma和(636.3±4.9) Ma的锆石SHRIMP U-Pb年龄,结合湖北长阳大塘坡组中部凝灰岩层(654.2±2.7) Ma的SIMS U-Pb年龄(Liu et al., 2015),以及陡山沱组底部(635.2±0.6) Ma和(632.5±0.5) Ma的U-Pb年龄(Condon et al., 2005),认为华南Marinoan冰期是一个相对短暂、快速终结的冰期,冰期启动时间不晚于654 Ma(Zhang et al., 2008; Liu et al., 2015)。大塘坡组和南沱组冰碛岩界线之下约0.4 m的凝灰岩最新的锆石U-Pb年龄将华南南沱冰期的启动时间限定在(651.2±3.3) Ma(Ma et al., 2023),这一年龄与美国死谷非冰川沉积Thorndike亚段上部白云岩中粉砂岩 ID-TIMS 锆石获得的(651.69±0.64) Ma最大沉积年龄一致(Nelson et al., 2020),Ma et al.(2023)将南沱组沉积时限限定在651~635 Ma,冰期持续时间不超过先前认为的19 Myr。南沱组岩石组合、沉积特征以及地球化学指标(吴黎军, 2019;李明龙等,2019;季泽龙等,2022;胡军,2021;Bai et al., 2020;隋佩珊,2021;赵妮娜,2016;唐婷婷等,2019;冯连君等,2003;谯文浪等,2013;王自强等,2006,2009)表明其经历了多个旋回的冰进—冰退(顾尚义,2013;赵妮娜,2016;蔡雄飞等,2017;Lang et al., 2018;Ma et al., 2022;Yan et al., 2020;Chen et al., 2021;Bai et al., 2020),以及由干燥寒冷到温暖潮湿气候环境的频繁交替变化(冯连君等,2003;王自强等,2006,2009;旷红伟等,2017;李明龙等,2019;吴忠银和顾尚义,2019;谯文浪等,2013;顾尚义和毕晨时等,2015),并能进行区域地层划分及对比(王自强等,2006,2009;赵妮娜,2016)。
由此可见,前人对Marinoan期冰川沉积的冰退—冰进序列、古气候演化过程及该时期“雪球地球”的认识等方面仍存在较大分歧。扬子北缘城巴断裂带南北两侧均发育一套较为完整的南华系,其自下而上为两套冰期和一套间冰期沉积。本文研究的南沱组凉桥剖面位于城巴断裂南侧的城口高燕(31°58′56.3″N,108°32′41.8″E),岩性主要为一套灰绿色含砾砂岩与灰紫色含砾粉砂岩韵律互层,与下伏大塘坡组灰绿色中厚层状砂岩,上覆陡山沱组紫红色中薄层状砂岩夹一层厚约1~2 cm的灰绿色斑脱岩整合接触。通过野外详细的剖面观察和系统性的样品采集,开展沉积学研究,厘清大巴山地区Marinoan期冰川的沉积充填序列,结合区域剖面对比研究,建立扬子北缘Marinoan期冰川沉积模式;通过全岩样品的岩石地球化学分析,探讨大巴山地区Marinoan期古气候演变过程。以上研究结果对于认识Marinoan期冰川沉积序列、古气候演化以及“雪球地球”等方面有重要地质意义。
1. 区域地质背景
新元古代时期,华南板块位于北纬30°~60°之间,西邻大印度板块(Great India),南与塔里木板块相隔(图1a)。在Rodinia超大陆解体的背景下,扬子板块东南缘发育了南华裂谷盆地(王剑等,2001;江新胜等,2020;李明龙等,2021;邓奇等,2023;齐靓等,2023)。大巴山地区的重力异常及“堑垒式”的地层充填序列揭示了扬子北缘也发育一个与俯冲相关的南华系弧后裂谷盆地,呈东西向展布,沿南秦岭中部延伸到四川盆地东北部,可能是川中裂谷的延伸,后期构造挤压致使盆地走向转为北东向(李路顺等,2021;图1b)。最新研究认为,南秦岭地区湖北—陕西岩浆岩主喷发时间为(720.21±0.32) Ma,时间上与富兰克林大火成岩省相当,可能诱发了Sturtian雪球地球的启动(Lu et al., 2022)。而南秦岭约643~635 Ma广泛而巨厚的裂谷型岩浆岩则可能促使了Marinoan期的冰消,并缩短了Marinoan冰期的时间(Lan et al., 2022)。冰期结束后,气候迅速变暖,陡山沱组盖帽碳酸盐岩、砂泥岩快速超覆其上,灯影组沉积期发育浅水碳酸盐岩台地(旷红伟等,2017),结束了南华裂谷盆地充填和演化历史(王剑,2001)。
图 1 研究区位置及城口地区区域地质简图a. 635 Ma全球陆块分布图(据Zhang et al., 2013; AB—阿拉伯半岛;AM—亚马逊古陆;BA—波罗地大陆;CO-SF—旧金山;EA—南极东部;IN—印度;KA—喀拉哈里沙漠;NA—澳大利亚北部;NC—中国北方;SA—澳大利亚南部;SC—中国南方;SB—西伯利亚;TA—塔里木盆地;WAF—西非;WA—澳大利亚西部);b. 大巴山地区所处的构造位置及扬子北缘南华裂谷盆地(据李路顺等,2021);c. 大巴山城口地区区域地质简图及剖面位置(据Li et al., 2023)Figure 1. Location of the study area and regional geological schematic map of the Chengkou area研究剖面所处的大巴山地区位于扬子北缘盆山过渡区,北与秦岭造山带、南与四川盆地相邻,夹于武当山隆起、神农架隆起和米仓山隆起之间,为一个南向突出的弧形构造带(图1b)。城巴断裂带将其分为南、北大巴山两个沉积—构造单元(图1c;刘春来等,2021)。北大巴山地层自南向北由老变新,包括南华系、震旦系、寒武系、奥陶系及志留系,早古生代基性岩墙群侵入到不同时代的岩层中,志留纪地层中发育“裂谷型”火山岩;南大巴山地层由北向南逐渐变新,包括南华系、震旦系、寒武系、奥陶系、志留系及二叠系、三叠系,缺失泥盆系和石炭系,上奥陶统—下志留统黑色岩系中发育多套火山灰沉积,成岩蚀变后称为钾质斑脱岩(熊国庆等,2017,2019)。北大巴山南华系原称耀岭河群,后自下而上被解体为龙潭河组、代安河组和木座组,其上被震旦系蜈蚣口组、水晶组碎屑岩、碳酸盐岩所超覆(唐将和林源,2002)。前人在龙潭河组顶部获得了(704±4) Ma锆石LA-ICP-MS U-Pb年龄,认为其与南大巴山莲沱组同期(Xiang et al., 2015);在蜈蚣口组底部凝灰岩获得(633.4±3.1) Ma锆石SHRIMP U-Pb年龄,据此认为木座组沉积不晚于635 Ma,与南大巴山南沱组635 Ma 最晚沉积年限一致(Condon, 2005)。南大巴山南华系原指南沱组,也称明月组,为一套南华大冰期的晚冰期沉积。笔者通过近年来野外调查,结合紫阳地区南华系最新研究成果,认为南沱组可能包含了南华大冰期的早冰期沉积,可与湖北神农架地区进行对比。区域上,北大巴山木座组和南大巴山南沱组沉积特征及岩性大致相同,为一套灰绿色块状含“坠石砾”粉砂岩的冰川沉积。
新元古代开始,大巴山地区经历了南华纪裂谷盆地(李路顺等,2021),寒武纪被动大陆边缘盆地,奥陶纪—志留纪前陆盆地(熊国庆等,2017)以及二叠纪—三叠纪“碰撞型”裂谷盆地(肖安成等,2011;毛黎光等,2011)的盆地演化过程。印支期,随着勉略洋的关闭,华北地块和扬子地块最终拼合,此后秦岭开始发生向南的强烈逆冲推覆。新生代以来,在中国东部环太平洋俯冲,西南特提斯洋俯冲和西秦岭—昆仑向南逆冲联合下向东南挤压,以及华北地块持续向南挤压等共同作用下,中、上扬子处于三面围限汇聚的大地构造背景(董树文等,2007),造就了一个向南突出的米仓山—大巴山弧状构造带(图1c)。
2. 样品及测试分析
2.1 剖面特征及样品位置
凉桥剖面(LQ)位于城口以西约5 km的高燕镇凉桥村,南沱组出露较为完整,剖面沿Z002乡道测制,剖面方向为北北东向。自下而上分为大塘坡组、南沱组和陡山沱组,其岩性特征如下:
大塘坡组(Nh1d;0~1层),顶部为灰绿色中厚层状岩屑砂岩夹粉砂岩(图2a-b),中部夹白云岩透镜体,为一套南华大冰期的间冰期沉积,与三叠系断层接触(图1c)。
南沱组(Nh2n;2~26层),主要为一套灰绿色、灰紫色块状含砾粉砂岩(图2a-f),砾石成分较为复杂,有砂岩、花岗岩、辉绿岩和灰岩,砾石含量为3%~5%,多者可达15%~20%,粒径大小介于0.5~3 cm,大者10 cm以上(图2d-f),分选一般,磨圆一般,棱角—次圆状,显示出“冰川漂砾”的特征;下部以灰绿色、灰紫色块状含砾粉砂岩互层为主,中上部以灰绿色块状含砾粉砂岩为主,近顶部发育层间小断层(图3),底部与大塘坡组整合接触。
陡山沱组(Z1d;27层),岩性为紫红色薄层状泥岩夹紫红色薄板状砂岩,间夹厚约1 cm的灰绿色斑脱岩,向上变为紫红色中层状泥岩(图3c-d),底部与南沱组整合接触。
本次研究对南沱组凉桥剖面自下而上进行密集采样,采样密度约为1件/m,共采集73件全岩样品用于地球化学分析,其中大塘坡组4件(LQ01—LQ04),南沱组67件(LQ05—LQ71),陡山沱组2件(LQ72—LQ73)。
2.2 测试方法及手段
将全岩块状样品敲碎,尽量剔除样品中的砾石,挑选较为细小的基质组分进行碎样,研磨样品至200目,以备全岩样品的主、微量元素分析。主要分析流程如下:先将研磨好的200目样品置于烘箱中,在105℃高温下烘干2 h,取出置于干燥器中冷却至室温;准确称取7.000 g复合熔剂于30 mL干净的瓷坩埚中;再称取已烘干的样品
0.7000 g置于其上坩埚中,充分搅拌均匀,转入专用黄铂金坩埚中,在CLAISSE电加热自动熔融炉中熔融,制成玻璃样片,取出置于干燥器中冷却;最后将制备好的样片装入帕纳克AXIOS波长色散X射线荧光光谱仪中测试分析,采用GB/T 14506-2014标准《波长色散X射线荧光光谱法》测定硅酸盐岩石中主微量元素。按照DZ/T 0130-2006《地质矿产实验室质量管理规范》的要求进行样品测试质量监控,测试结果见附表11 和附表21 。3. 分析结果
3.1 主量元素
凉桥剖面主量元素分析结果见附表1
1 。其中大塘坡组样品Al2O3含量为14.56%~16.3%,平均15.71%;南沱组为12.28%~17.84%,平均14.36%,其Al2O3含量与贵州地区不同沉积相带各个剖面和峡东地区青林口剖面样品相当(顾尚义和毕晨时,2015;季泽龙和刘晓峰,2023),远低于神农架三省台南沱组中段(17.5%~21.2%)(Bai et al., 2020)和长阳地区古城村剖面(17.49%~18.40%)(季泽龙和刘晓峰,2023);陡山沱组样品Al2O3含量为17.92%~19.52%,平均18.72%。自下而上,总体上表现为由大变小再增大的趋势。大塘坡组样品SiO2含量为60.3%~66.58%,平均63.84%;南沱组为54.61%~69.75%,平均64.53%,其SiO2含量低于贵州地区不同沉积相带各个剖面(61.56%~73.60%)和长阳地区古城村剖面样品(69.64%~75.93%)(顾尚义和毕晨时,2015;季泽龙和刘晓峰,2023),与峡东地区青林口剖面相当(季泽龙和刘晓峰,2023);陡山沱组样品SiO2含量为53.66%~55.48%,平均54.57%;SiO2含量总体表现为大塘坡组略低于南沱组,南沱组远高于陡山沱组的趋势,与Al2O3含量的变化趋势相反,可能与源区因气候变化导致强烈的风化作用有关。大塘坡组、南沱组样品的Fe2O3含量变化不大,介于1.11%~3.26%;陡山沱组样品的Fe2O3含量明显增大,为6.31%~8.26%,FeO含量的变化趋势与之相反。大塘坡组和陡山沱组CaO含量较为稳定,南沱组波动较大,为0.4%~8.64%,平均2.25%。大塘坡组和南沱组样品MgO含量总体变化不大,为2.03%~3.86%,平均2.64%,陡山沱组略高。凉桥剖面Na2O、K2O含量较为稳定,Na2O含量基本介于1.54%~3.25%之间,平均值为2.33%,K2O含量介于2.26%~4.26%之间,平均值为3.11%,Na2O含量略低于K2O。剖面TiO2、P2O5含量同样变化不大,TiO2含量介于0.52%~0.76%之间,平均值为0.62%,P2O5含量介于0.10%~0.16%之间,平均值为0.13%,其中南沱组TiO2含量略低于神农架三省台南沱组中段的含量(0.74%~1.06%)(Bai et al., 2020),与贵州地区不同沉积相带各个剖面相当(顾尚义和毕晨时,2015),P2O5含量略低于神农架三省台南沱组中段(0.17%~0.26%)(Bai et al., 2020),略高于贵州地区不同沉积相带各个剖面(顾尚义和毕晨时,2015)。顾尚义和毕晨时(2015)认为冰下风化作用释放的磷被搬运到海洋中,由于水体缺氧,生物及铁氧化物对磷的吸收和吸附减弱,导致磷逐渐积累、富集。南沱组MnO含量在0.048%~0.22%之间,平均含量0.096%,变化不大,略低于神农架三省台南沱组中段的含量范围(0.06%~0.27%)(Bai et al., 2020),与贵州地区不同沉积相带各个剖面相当(顾尚义和毕晨时,2015)。3.2 微量元素
凉桥剖面微量元素分析结果见附表2
1 ,原始地幔标准化蛛网图如图4所示。陡山沱组、南沱组和大塘坡组样品微量元素变化趋势基本与上地壳一致,南沱组Th、U、K、Sr、P、Ti元素较上地壳相对亏损,而Rb、Eu、Tb、Y、Er、Yb、Lu元素较上地壳相对富集。南沱组泥岩大离子亲石元素Sr较原始地幔相对富集,平均质量分数为78.74×10-6,而Rb、Ba、Th、U元素较原始地幔显著富集。凉桥剖面南沱组样品微量元素变化趋势与三峡九龙湾剖面基本一致(图4),Ba元素略有异常,可能是由于三峡九龙湾地层含有较多的黏土矿物将Ba元素吸附导致(刘英俊,1984;Hossain et al., 2010)。Figure 4. Primitive mantle-normalized trace element spider diagram for the Nantuo Formation in the Liangqiao section and the Jiulongwan section of the Three Gorges (data for Jiulongwan cited from Hu et al., 2016; Wang et al., 2006; primitive mantle values are from Sun and McDonough, 1989)凉桥剖面稀土元素测试结果见附表3
1 ,稀土元素PAAS标准化图如图5所示。凉桥剖面总稀土元素含量(∑REE)为157.83×10-6~241.86×10-6,平均189.35×10-6,其中大塘坡组4件样品∑REE为194.35×10-6~241.64×10-6,均值215.77×10-6;南沱组67件样品∑REE为157.83×10-6~241.86×10-6,平均187.67×10-6;陡山沱组2件样品∑REE为177.69×10-6~208.04×10-6,均值192.87×10-6,与神农架三省台南沱组中段样品169×10-6~242×10-6(均值199.38×10-6)的∑REE+Y值相当。总体上看,∑REE变化不太明显,但平均含量显示了南沱组低于大塘坡组和陡山沱组的特点,表明温暖气候条件较寒冷气候环境更易富集稀土元素。南沱组样品的Y/Ho比值基本稳定,介于18.93~30.29之间,平均26.22,略低于三峡地区青林口剖面和长阳地区古城村剖面(季泽龙和刘晓峰,2022)。Figure 5. NASC-normalized REE distribution patterns for the Nantuo Formation in the Liangqiao section and the Sanshengtai section (data for Sanshengtai section of Shennongjia area are quoted from Bai et al., 2020;PAAS standardized data are from McLennan, 1989)PAAS标准化图显示,凉桥剖面大塘坡组、南沱组和陡山沱组都表现为轻稀土亏损、重稀土富集,略向左倾的稀土元素配分模式(图5)。三个层位的Eu和Tm均表现为正异常,不同于神农架三省台南沱组,正Eu异常可能是由于受到海底热水沉积的影响(刘春来等,2021),陡山沱组两个样品的Sm元素表现为负异常。相比于凉桥剖面,神农架三省台南沱组中段样品的稀土元素PAAS配分图整体呈现相对平坦的趋势,可能与陆地流入集中的低稀土元素补偿有关,因此该剖面南沱组中段红层沉积可能是在气候变暖条件下冰川部分融化的产物(Bai et al., 2020)。
4. 讨论
4.1 剖面冰川沉积序列
冰川沉积相组合模式分析可以用来恢复盆地沉积历史,重建冰川演化序列(胡军,2021)。相对于冰陆环境,冰海环境沉积空间充足,不易因为冰进造成侵蚀,因此可以保存更为完整的冰川进退旋回(Ali et al., 2018)。冰海环境相对深水的记录更为连续,保存了更完整的气候变化信息,但由于距离冰川前缘较远,沉积微相对于气候环境变化尤其是冰川进退旋回反应不灵敏,通常为较单一的岩性组合。在一个冰期的时限范围内,局部的区域性气候可能会有所波动,造成冰川的前进与后退,因而冰川沉积发生变化(胡军,2021)。
图6显示了凉桥剖面南沱组完整的冰川沉积序列,岩性主要为一套灰绿色含砾砂岩与灰紫色含砾粉砂岩韵律互层,普遍含有冰川作用的“坠石”砾石,砾石成分较为复杂,有砂岩、板岩、泥岩、灰岩等沉积岩和花岗岩、辉绿岩等火山岩,砾径差异明显,磨圆中等,含量从3%~5%到25%~30%不等,具有典型的冰川沉积特征。垂向上,剖面底部大塘坡组(层0和层1)为灰绿色中厚层—块状砂岩与粉砂岩互层,不含砾石,为间冰期浅海相沉积;南沱组底部层2为一套灰紫色块状含砾粉砂岩,偶见砾石,预示着Marinoan期冰川的开始;往上层3~层5变为灰绿色块状含砾粉砂岩,砾石含量3%~5%,局部达到15%~20%,甚至高达25%~30%,为冰川作用环境下的冰海相沉积;层6~层8沉积了一套浅海相的暗紫色、灰紫色块状含砾粉砂岩、不含砾的灰绿色中砂岩和暗紫色、灰紫色粉砂岩,呈现明显的冰退沉积序列;至此,层2~层8构成了南沱冰期第1个三级冰进—冰退沉积序列。层10为一套灰绿色块状含砾粉砂岩的冰海相沉积,砾石含量为5%~10%;层11沉积一套灰紫色块状含砾粉砂岩夹灰绿色含砾粉砂岩透镜体,砾石含量3%~5%,为冰退沉积产物;层10~层11形成了南沱冰期第2个三级冰进—冰退沉积序列。层12发育一套灰绿色含砾粉砂岩冰浅海相沉积,砾石含量10%~15%;层13为灰紫色、暗紫色块状含砾粉砂岩,砾石含量3%~5%,为一套浅海相的冰退沉积;层12~层13形成了南沱冰期第3个三级冰进—冰退沉积序列。层14为一套冰海相灰绿色块状含砾粉砂岩,砾石含量5%~10%;层15又变为浅海相灰紫色块状含砾粉砂岩,砾石含量5%~10%,局部达15%~20%;层14~层15组成了南沱冰期第4个三级冰进—冰退沉积序列。层16为冰海相灰绿色块状含砾粉砂岩,砾石含量15%~20%;层17沉积了一套灰紫色、暗紫色块状含砾粉砂岩,砾石含量3%~5%;二者构成了南沱冰期第5个三级冰进—冰退沉积序列。层18为一套灰绿色块状含砾粉砂岩的冰海相沉积,砾石含量5%~10%;层19发育一套灰紫色块状含砾粉砂岩,砾石含量5%~10%;二者构成南沱冰期第6次三级冰进—冰退沉积序列。层20为一套冰海相灰绿色块状含砾粉砂岩,砾石含量3%~5%;层21发育一套灰紫色、暗紫色块状含砾粉砂岩,砾石含量3%~5%;二者构成了南沱冰期第7个三级冰进—冰退沉积序列。层22~层26均为一套冰海相灰绿色块状含砾粉砂岩,砾石含量3%~5%,与陡山沱组底部浅海相紫红色中薄层状泥岩夹薄板状砂岩组成一个二级冰进—冰退沉积序列。
凉桥剖面南沱组岩石学、沉积学特征表明,南沱冰期早期冰进—冰退频繁,主要经历了7个三级冰进—冰退沉积旋回,4个二级冰进—冰退沉积旋回,与南沱组晚期构成了1个一级冰进—冰退沉积旋回。南沱组这种多次冰进—冰退,导致海平面的频繁升降变化,形成浅海相与冰浅海相交互的沉积产物,沉积物表现出灰紫色、暗紫色与灰绿色的颜色反复变化,与沉积时期底层水体氧化还原环境变化有关。
4.2 地球化学指标
4.2.1 ICV样品有效性
在沉积和成岩的过程中,沉积分选、再旋回以及钾交代等作用会使得岩石的原始成分发生变化(徐小涛等,2018),所以在计算CIA指数之前,需要对测试样品进行成分变异指数(ICV)的计算,来挑选出合适的样品(孙娇鹏等,2016),ICV指数被广泛用来判断一个细碎屑样式的序列是第一次沉积的沉积物还是再循环的沉积物(冯连君等,2003),根据相关定义,其计算公式为:
${\rm{ICV}} = [n\left( {{\rm{F}}{{\rm{e}}_2}{{\rm{O}}_3}} \right) + $ $n\left( {{{\rm{K}}_2}{\rm{O}}} \right) + n\left( {{\rm{N}}{{\rm{a}}_2}{\rm{O}}} \right) + n\left( {{\rm{Ca}}{{\rm{O}}^*}} \right) + n({\rm{MgO}}) + n({\rm{MnO}}) + n\left( {{\rm{Ti}}{{\rm{O}}_2}} \right)]/ $ $n\left( {{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_{\rm{3}}}} \right) $ ,其中,主要成分均采用摩尔分数,CaO*为硅酸盐中的CaO。当ICV值大于1时,说明样品中含有很少的黏土矿物,反映沉积物是构造活动的首次沉积;当ICV值小于1时,说明样品中含有较多的黏土矿物,反映其是经历了再次沉积的产物或是曾遭受强烈的化学风化作用(Cullers and Podkovyrov, 2000; Cullers, 2002; 冯连君等,2003)。从计算结果来看(附表1
1 ),凉桥剖面样品的ICV值均大于1,在1.02~1.56之间,其中大塘坡组4个样品趋于稳定,南沱组样品变化较大,在1.02~1.56之间,陡山沱组2个样品的ICV值为1.28和1.55。ICV值说明凉桥剖面样品含极少黏土矿物的首次沉积物。4.2.2 CIA指标
化学蚀变指数(CIA)最开始作为一个能够定量反映源岩化学风化程度的指标被提出(Nesbitt and Young,1982,1984),之后被引用于定量地反映沉积物沉积时的古气候环境研究(Young and Nesbitt,1999;冯连君等,2003)。其计算公式为:
$$ \rm{CIA}=\left[\frac{\mathit{n}(\rm{A}\rm{l}_{\rm{2}}\rm{O}_{\rm{3}})}{\mathit{n}(\rm{A}\rm{l}_{\rm{2}}\rm{O}_{\rm{3}})\rm{+}\mathit{n}(\rm{CaO^*})\rm{+}\mathit{n(}\rm{K}_{\rm{2}}\rm{O})+\mathit{n}(\rm{N}\rm{a}_{\rm{2}}\rm{O})}\right]\times\rm{100} $$ 其中,CaO*为硅酸盐中的CaO成分,CIA值一般介于50~100之间,50代表未经化学风化的岩石,100代表完全化学风化的岩石(谯文浪等,2013),化学风化程度与CIA值呈正相关,CIA值越高,说明所经历的化学风化作用越强,风化产物中的K、Na和Ca等元素流失得越多。一般认为,CIA值介于50~65之间为寒冷干燥气候,65~85之间为温暖湿润气候,85~100之间为炎热潮湿气候(冯连君等,2003)。
凉桥剖面CIA计算结果如附表1
1 所示,大塘坡组4件样品CIA值在61.31~65.50之间,平均为63.87,表明该时期气候可能处于温暖潮湿向寒冷干燥过渡的阶段;南沱组67件样品的CIA值在53.15~68.06之间,平均值为59.80,反映整体为寒冷干燥的气候条件;陡山沱组2件样品CIA值分别为62.75、70.57,平均值为66.66,反映陡山沱组气候由温暖湿润转变为寒冷干燥。垂向上,南沱早期灰紫、暗紫色块状含砾粉砂岩、粉砂岩沉积时,CIA值通常发生明显波动,尽管其CIA值多数仍在65以下,反映寒冷干燥的气候,但这种波动明显是对气候变化的一种响应,表明灰紫、暗紫色块状含砾粉砂岩、粉砂岩可能是寒冷干燥向温暖潮湿气候转换时的沉积产物(图7)。根据CIA指数垂向波动,在南沱早期识别出6次气候转变,南沱晚期识别出2次气候转变,尽管凉桥剖面南沱晚期气候变化并未在岩石学、沉积学得以反馈,但区域地层特征揭示了南沱晚期的气候变化。(图7,图8)。图7显示凉桥剖面南沱组CIA指数呈现了早期频繁波动、中期稳定和晚期波动的变化特征,这种变化表明南沱冰期经历了早期渐冻期、中期冰冻期和晚期解冻期,大体上可与湖北神农架三省台剖面南沱组中段红层CIA值变化趋势进行对比(图8)。图 8 凉桥剖面与三省台剖面地球化学指标对比(三省台剖面引自Bai et al., 2020)Figure 8. Comparison of geochemical indexes between the Liangqiao and the Sanshengtai sections (date for the Sanshengtai section are from Bai et al., 2020)A–CN–K三角图(图9)表明,凉桥剖面的样品大致都处于同一偏离理论风化趋势的直线上,都是向右偏离预测风化趋势线(平行于A–CN边),这种偏离趋势也同样出现在贵州松桃南沱组冰碛岩中,不仅与源岩有关,还有可能是钾交代造成的(Fedo et al., 1995)。
图 9 大巴山城口凉桥剖面样品A–CN–K三角图解(贵州松桃南沱组数据引自吴忠银等,2019)Figure 9. A–CN–K triangle diagram of samples from the Liangqiao section of Chengkou, Daba Mountains (data for the Nantuo Formation from Songtao in Guizhou Province are fromWu et al., 2019)4.2.3 CIW和PIA指标
由于成岩过程中钾交代作用会使得样品钾元素发生富集,Harnois(1988)年提出了化学风化作用判别指数CIW,其计算公式为:
$$ \rm{CIW=}\left[\frac{\mathit{n}(\rm{A}\rm{l}_{\rm{2}}\rm{O}_{\rm{3}})}{\mathit{n}(\rm{A}\rm{l}_{\rm{2}}\rm{O}_{\rm{3}})\rm{+}\mathit{n}(\rm{CaO^*})\rm{+}\mathit{n}(\rm{N}\rm{a}_{\rm{2}}\rm{O})}\right]\times\rm{100} $$ 式中均采用摩尔分数,CaO*为硅酸盐中的CaO成分。计算结果见附表1
1 ,CIW垂向演化趋势与CIA基本一致,大塘坡组4个样品CIW值较高,反映其温暖湿润的气候条件。南沱组67个样品的CIW值介于59.94~82.59之间,均值为69.78,说明南沱组存在一定的气候波动,并不是一直处于寒冷干燥的气候条件;陡山沱组2个样品的CIW值较高,反映了温暖湿润的气候条件(图7)。但考虑到钾长石含有Al元素,不管钾长石样品是否经历风化,计算CIW值时,即使去掉了K2O,CIW值仍会偏高,因此Fedo er al.(1995)提出了反映分化过程中斜长石蚀变程度的斜长石蚀变指数PIA,其计算公式为:$$ \rm{PIA}=\left[\frac{\mathit{n}(\rm{A}\rm{l}_{\rm{2}}\rm{O}_{\rm{3}})\rm{-}\mathit{n}(\rm{K}_{\rm{2}}\rm{O})}{\mathit{n}(\rm{A}\rm{l}_{\rm{2}}\rm{O}_{\rm{3}})\rm{+}\mathit{n}(\rm{CaO^*})+\mathit{n}(\rm{N}\rm{a}_{\rm{2}}\rm{O})\rm{-}\mathit{n}(\rm{K}_{\rm{2}}\rm{O})}\right]\times\rm{100} $$ 式中,主要成分均采用摩尔分数,CaO*为硅酸盐中的CaO成分。计算结果见附表1
1 ,凉桥剖面的化学风化指数(CIW)和斜长石蚀变指数(PIA)反映的化学风化程度的变化趋势与CIA具有较高的一致性(图7)。其中大塘坡组4个样品PIA值介于65.58~71.45之间,均值69.02;南沱组样品PIA值介于54.10~77.87之间,均值63.74,表明南沱组气候存在一定的波动;陡山沱组2个样品PIA值为67.87和81.23,变化较大,反映陡山沱组气候由温暖湿润转变为寒冷干燥,表明其整体处于温暖湿润气候条件。4.2.4 其他地化指标
Al被认为是一种分布于黏土矿物中的典型陆源元素,在温暖湿润的环境下,经历风化作用和长期淋滤后,碱金属元素等易迁移元素会被大量浸出,而Al元素由于化学性质稳定,通常会在风化产物中富集,相反在寒冷干燥的环境下不易富集。SiO2更易在干旱环境中富集,所以沉积物中Al2O3含量及SiO2和Al2O3的摩尔比也可以用于风化程度的评价(图7)。
结果显示,大塘坡组4件样品Al2O3含量介于14.56%~16.30之间,反映其整体处于温暖湿润气候条件;南沱组样品Al2O3含量介于12.28%~17.84%之间,均值17.84%,反映该时期气候存在寒冷干燥—温暖湿润的波动;陡山沱组2件样品Al2O3含量分布为17.92%和19.52%,均大于16%,指示其气候温暖湿润。n(SiO2)/n(Al2O3)比值与风化强度呈负相关,南沱组样品中的n(SiO2)/n(Al2O3)比值大部分大于7,部分小于7,高于陡山沱组和大塘坡组,同样验证南沱组气候存在寒冷干燥到温暖湿润的波动(图7)。
4.3 冰川沉积序列区域对比及沉积模式
扬子北缘—神农架—三峡—扬子东南缘南沱组冰碛物区域对比(图10)显示,扬子北缘西侧汉中胡家坝剖面(图10①)南沱组中下部为一套灰绿色块状含“坠石”粉砂岩,仅从岩石学和沉积学特征无法区分南沱早期渐冻期或中期冰冻期,上部为灰绿色块状含砾粉砂岩夹中厚层状砂岩,发育平行层理,具有典型牵引流作用痕迹,表明南沱晚期曾发生过冰川消融,对应于南沱晚期解冻期。湖北神农架三省台剖面(图10③)底部为灰绿色块状含“坠石”粉砂岩,中下部发育冰碛砂砾岩夹红层,分别为冰川湖近端、冰川湖远端和非冰川环境下的沉积,暗示了开阔水域的存在(Bai et al., 2020),对应于南沱早期渐冻期,其上部为灰绿色块状含“坠石”粉砂岩,可能对应于南沱中期冰冻期。三峡九龙湾剖面(图10④)南沱组下部发育一套灰绿色块状冰川杂砾岩夹灰色泥岩、紫红色砂泥岩及灰岩,表明其发生过冰川消融事件,对应于南沱早期渐冻期;南沱组中部灰绿色块状冰川杂砾岩代表了南沱中期的冰冻期,上部灰绿色块状冰川杂砾岩夹灰色粉砂岩,相当于南沱晚期解冻期沉积。贵州松桃ZK505钻孔(图10⑤)南沱组下部灰绿色块状含砾粉砂岩夹灰色砂泥岩及白云岩,暗示了开阔水域的存在(赵思凡等,2020),对应于南沱早期渐冻期;中部灰绿色块状含砾粉砂岩,相当于南沱中期冰冻期;上部灰色泥岩、粉砂岩及灰绿色块状含砾粉砂岩代表了南沱晚期解冻期沉积。
因此,南沱冰期可进一步分为早期渐冻期、中期冰冻期和晚期解冻期,而且区域上还能很好地进行对比,这种划分和对比也与神农架—扬子东南缘南沱组地层对比结果相一致(图11;Ye et al., 2024)。
图 11 湖北神农架地区及扬子东南缘南沱组冰期沉积对比(据Ye et al., 2024修编)Figure 11. Correlation of glacial sediments of the Nantuo Formation in Shennongjia area, Hubei Province and the southeast margin of the Yangtze block (revised according to Ye et al., 2024)根据扬子北缘、神农架—三峡地区及扬子东南缘南沱组冰川沉积岩石学、沉积学特征及其区域对比研究,我们建立了南沱早期渐冻期、中期冰冻期和晚期解冻期三个时期的冰川沉积模式(图12)。南沱早期渐冻期,由于全球气候变冷,冰川开始从两极向赤道附近推进,海洋几乎被冰雪覆盖,底层水体普遍缺氧,但随着气候变化,冰川消融,在赤道和中低纬度地区,仍存在开阔水域(Bai et al., 2020;赵思凡等,2020),大气氧气通过冰川融水或通过溶解氧的方式进入沉积水体,形成富氧的红层沉积,沉积物成层性好,红层的形成可能与新元古代氧化事件有关(Bai et al., 2020)。南沱早期的气候变化较为频繁,因而这一时期出现多次冰进—冰退沉积旋回,不同剖面的南沱组因其所处的古地理位置、沉积相带的差异所表现出的冰川进退次数也不相同(图12Ⅰ)。南沱中期,当冰川作用达到顶峰时,冰川推进到赤道,海洋完全被冰盖冰封,全球进入了冰冻期,此时大气氧气与沉积水体氧气交换被完全切断,表层水体流通性不畅,底层水体更为缺氧,处于硫化状态(图12Ⅱ)。南沱晚期,全球气温逐渐回升,进入了冰川解冻期,部分海洋冰盖消融,出现开阔水域,大气氧气通过冰川融水或溶解氧的方式进入沉积水体,形成富氧的红层沉积,表层水体流通性增强,沉积物成层性好,底层水体仍处于缺氧状态。这一时期的气候变化也较为频繁,同样会发生多次冰进—冰退沉积旋回(图12Ⅲ)。然而,无论是南沱早期渐冻期还是晚期解冻期的冰进—冰退沉积序列,有时在沉积物岩石学、沉积学特征上不一定能反映出来,如颜色变化、成层性等,地球化学指标(如CIA)可能会有所响应。南沱组中上部冰碛岩中具有正Eu异常,表明南沱中晚期存在热液活动,这种热液活动可能与冰期的消亡存在着成因联系(谯文浪等, 2013)。南秦岭耀岭河群近年来发现了大量645.2~636.1 Ma的Marinoan期裂谷型火山岩(邓乾忠等,2016;Lan et al., 2022),这些大规模火山作用也会加剧冰川快速消融,缩短了Marinoan期“雪球地球”状态的持续时间(Lan et al., 2022)。
4.4 古气候意义
Marinoan冰期是成冰纪末期一次全球性冰川事件,关于该时期全球是否完全被冰川覆盖,仍存在极大争议。Ye et al.(2024)根据华南南沱组冰碛岩中两个黑色岩系岩石学特征,结合化学蚀变指数(CIA)值和铀浓度等地球化学指标的变化,认为Marinoan冰期内发生了明显的气候变化。华南地区南沱组冰碛岩区域对比也显示了南沱冰期发生了多旋回的冰川进退,尽管不同学者提出的冰进—冰退次数不尽相同(顾尚义,2013;赵妮娜,2016;蔡雄飞等,2017;Lang et al., 2018;Ma et al., 2022;Yan et al., 2020;Chen et al., 2021;Bai et al., 2020),这些冰进—冰退沉积序列表明,南沱冰期气候并不稳定,期间出现过多次的、反复的冷暖变化,与地球化学指标(如CIA)所反映的结果较为一致。我们的研究也认为Marinoan冰期南沱组气候存在频繁的冷暖波动,主要发生南沱早期渐冻期和晚期的解冻期,并非一直是完全冰封的寒冷状态,部分地区仍存在无冰的开阔水域(也称绿洲),为古生物提供了宜居环境,这种宜居区域的周期性隔离和扩张可能起到了生物多样性泵的作用,促进了冰川作用后真核生物的快速辐射(Le Heron, 2012;Hoffmann, 2016;Song et al., 2023)。Griffiths et al.(2023)认为“多样性泵”的冰期循环推动了南极洲独特的动物群演化,这同样适用于晚元古代和地球上动物生命的进化。
5. 结论
(1)凉桥剖面南沱组以灰紫色、灰绿色块状含砾粉砂岩为主,冰川沉积序列及其岩石组合特征表明,南沱早期发生多次冰进—冰退沉积旋回,表明该时期气候并不稳定,出现过明显的冷暖变化,这些变化与CIA、CIW、PIA等地球化学指标相对应。
(2)华南南沱组冰碛岩区域对比研究显示,南沱冰期可进一步划分为南沱早期渐冻期、南沱中期冰冻期以及南沱晚期解冻期,冰川进退主要发生在早期渐冻期和晚期解冻期,其冰进—冰退旋回次数与不同剖面(钻井)所处的古地理位置和沉积相带有关。
(3)南沱组冰川沉积序列及地球化学证据支持了新元古代末期全球处于一个“slush snowball”(坍塌雪球)的状态的观点。Marinoan冰期内的气候变化会使中低纬度地区形成无冰的开阔水域(绿洲),不仅有利于大气氧进入沉积水体,还为冰期极端环境下的真核生物提供了避难所。
致谢:感谢中国地质调查局成都地质调查中心(西南地质科技创新中心)给予的大力帮助。感谢汪正江教授级高级工程师对野外工作的指导、冯兴雷高级工程师在野外地质样品采集方面的帮助。两位审稿专家的评审意见极大地提升了本文的质量,一并致以真诚的谢意!
1 *数据资料请联系编辑部或登录期刊官网https://www.cjyttsdz.com.cn/获取。 -
图 1 研究区位置及城口地区区域地质简图
a. 635 Ma全球陆块分布图(据Zhang et al., 2013; AB—阿拉伯半岛;AM—亚马逊古陆;BA—波罗地大陆;CO-SF—旧金山;EA—南极东部;IN—印度;KA—喀拉哈里沙漠;NA—澳大利亚北部;NC—中国北方;SA—澳大利亚南部;SC—中国南方;SB—西伯利亚;TA—塔里木盆地;WAF—西非;WA—澳大利亚西部);b. 大巴山地区所处的构造位置及扬子北缘南华裂谷盆地(据李路顺等,2021);c. 大巴山城口地区区域地质简图及剖面位置(据Li et al., 2023)
Figure 1. Location of the study area and regional geological schematic map of the Chengkou area
图 4 凉桥剖面与三峡九龙湾剖面南沱组微量元素原始地幔标准化蛛网图(三峡九龙湾数据引自胡蓉等,2016;王自强等,2006;标准化数据引自Sun and McDonough,1989)
Figure 4. Primitive mantle-normalized trace element spider diagram for the Nantuo Formation in the Liangqiao section and the Jiulongwan section of the Three Gorges (data for Jiulongwan cited from Hu et al., 2016; Wang et al., 2006; primitive mantle values are from Sun and McDonough, 1989)
图 5 凉桥剖面与三省台剖面南沱组稀土元素PAAS标准化图(神农架三省台数据引自Bai et al., 2020;PAAS标准化数据引自McLennan, 1989)
Figure 5. NASC-normalized REE distribution patterns for the Nantuo Formation in the Liangqiao section and the Sanshengtai section (data for Sanshengtai section of Shennongjia area are quoted from Bai et al., 2020;PAAS standardized data are from McLennan, 1989)
图 8 凉桥剖面与三省台剖面地球化学指标对比(三省台剖面引自Bai et al., 2020)
Figure 8. Comparison of geochemical indexes between the Liangqiao and the Sanshengtai sections (date for the Sanshengtai section are from Bai et al., 2020)
图 9 大巴山城口凉桥剖面样品A–CN–K三角图解(贵州松桃南沱组数据引自吴忠银等,2019)
Figure 9. A–CN–K triangle diagram of samples from the Liangqiao section of Chengkou, Daba Mountains (data for the Nantuo Formation from Songtao in Guizhou Province are fromWu et al., 2019)
图 11 湖北神农架地区及扬子东南缘南沱组冰期沉积对比(据Ye et al., 2024修编)
Figure 11. Correlation of glacial sediments of the Nantuo Formation in Shennongjia area, Hubei Province and the southeast margin of the Yangtze block (revised according to Ye et al., 2024)
-
[1] Allen P A,Leather J,Brasier M D,2004. The Neoproterozoic Fiq glaciation and its aftermath,Huqf supergroup of Oman[J]. Basin Research,16(4):507 − 534. DOI: 10.1111/j.1365-2117.2004.00249.x
[2] Allen P A,Etienne J L,2008. Sedimentary challenge to snowball Earth[J]. Nature Geoscience,1(12):817 − 825. DOI: 10.1038/ngeo355
[3] Abbot D S,Voigt A,Koll D,2011. The Jormungand global climate state and implications for Neoproterozoic glaciations[J]. Journal of Geophysical Research:Atmospheres,116(D18):4121 − 4132.
[4] 安志辉,童金南,叶琴,等,2014. 峡东青林口地区新元古代地层序列及沉积演变[J]. 地球科学,39(7):795 − 806. An Z H,Tong J Y,Ye Q,et al.,2014. Neoproterozoic stratigraphic sequence and sedimentary evolution at Qinglinkou section,East Yangtze Gorges area[J]. Earth Science,39(7):795 − 806 (in Chinese with English abstract).
[5] Ali D O,Spencer A M,Fairchild I J,et al.,2018. Indicators of relative completeness of the glacial record of the Port Askaig Formation,Garvellach Islands,Scotland[J]. Precambrian Research,319:65 − 78. DOI: 10.1016/j.precamres.2017.12.005
[6] 安志辉,叶琴,胡军,等,2023. 神农架成冰纪宋洛生物群的赋存层位厘定[J]. 地质科学,48(10):3799 − 3811. An Z H,Ye Q,Hu J,et al.,2023. Stratigraphic position of Cryogenian Songluo biota in Shennongjia area[J]. Chinese Journal of Geology,48(10):3799 − 3811 (in Chinese with English abstract).
[7] Bodiselitsch B,Koeberl C,Master S,et al.,2005. Estimating duration and intensity of Neoproterozoic snowball glaciations from Ir anomalies[J]. Science,308(5719):239 − 242. DOI: 10.1126/science.1104657
[8] Busfield M E,Le Heron D P,2014. Sequencing the Sturtian icehouse:dynamic ice behaviour in South Australia[J]. Journal of the Geological Society,171(3):443 − 456.
[9] 毕晨时,2015. 贵州南沱冰期海洋磷的地球化学[D]. 贵阳:贵州大学. Bi C S,2015. Marine Phosphours Geochemistry in Nantuo Ice Age in Southern China[D]. Guiyang:Guizhou University (in Chinese with English abstract).
[10] Busfield M E,Le Heron D P,2016. A Neoproterozoic ice advance sequence,Sperry Wash,California[J]. Sedimentology,63(2):307 − 330.
[11] Bai H Q,Kuang H W,Liu Y Q,et al.,2020. Marinoan-aged red beds at Shennongjia,South China:Evidence against global-scale glaciation during the Cryogenian[J]. Palaeogeography,Palaeoclimatology,palaeoecology,559:109967.
[12] Cullers R L,Podkovyrov V N,2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia,Russia:implications for mineralogical and provenance control,and recycling[J]. Precambrian Research,104(1):77 − 93.
[13] Cullers R L,Podkovyrov V N,2002. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group,southeastern Russia[J]. Precambrian Research,117(3 − 4):157 − 183. DOI: 10.1016/S0301-9268(02)00079-7
[14] Condon D,Zhu M,Bowring S,et al.,2005. U-Pb ages from the neoproterozoic Doushantuo Formation,China[J]. Science,308(5718):95 − 98. DOI: 10.1126/science.1107765
[15] 崔翔,2017. 扬子地块新元古代冰期地层和基性岩浆事件[D]. 南京:南京大学. Cui X,2017. Neoproterozoic glacial deposits and mafic magmatism in the the Yangtze Block[D]. Nanjing:Nanjing University (in Chinese with English abstract).
[16] 蔡雄飞,罗中杰,叶琴,2017. 湖南四都坪南沱组沉积特征与古气候变化耦合关系[J]. 华东地质,38(2):91 − 98. Cai X F,Luo Z J,Ye Q,2017. Sedimentary characteristics of the Nantuo Formation in Siduping,Hunan and its coupling relationship with paleoclimate[J]. East China Geology,38(2):91 − 98 (in Chinese with English abstract).
[17] Chen X S,Kuang H W,Liu Y Q,et al.,2021. Revisiting the Nantuo Formation in Shennongjia,South China:A new depositional model and multiple glacial cycles in the Cryogenian[J]. Precambrian Research,356:106132.
[18] 董树文,张岳桥,龙长兴,等,2007. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报,81(11):1449 − 1461. DOI: 10.3321/j.issn:0001-5717.2007.11.001 Dong S W,Zhang Y Q,Long C X,et al.,2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan movement[J]. Acta Geologica Sinica,81(11):1449 − 1461 (in Chinese with English abstract). DOI: 10.3321/j.issn:0001-5717.2007.11.001
[19] 邓乾忠,杨青雄,毛新武,等,2016. 湖北武当−随枣地区中−晚南华世岩石地层序列与年代学研究[J]. 资源环境与工程,30(2):132 − 142. Deng Q Z,Yang Q X,Mao X W,et al.,2016. Study of lithostratigraphic sequences and chronology of middle-late Nanhua in Wudang-Suizhou area[J]. Resources Environment and Engineering,30(2):132 − 142 (in Chinese with English abstract).
[20] 邓奇,崔晓庄,汪正江,等,2023. 扬子陆块北缘构造演化新认识:来自原花山群年代学和地球化学的制约[J]. 沉积与特提斯地质,43(1):212 − 225. DOI: 10.3969/j.issn.1009-3850.2023.01.016 Deng Q,Cui X Z,Wang Z J,et al.,2023. New understanding of the tectonic evolution of the northern margin of Yangtze Block:Constraints from the geochronology and geochemistry of the Huashan Group[J]. Sedimentary Geology and Tethyan Geology,43(1):212 − 225 (in Chinese with English abstract). DOI: 10.3969/j.issn.1009-3850.2023.01.016
[21] Fedo C M,Wayne Nesbitt H,Young G M,1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance[J]. Geology,23(10):921 − 924. DOI: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
[22] Fedo C M,Young G M,Nesbitt H W,et al.,1997. Potassic and sodic metasomatism in the southern province of the Canadian Shield:Evidence from the Paleoproterozoic Serpent Formation,Huronian Supergroup,Canada[J]. Precambrian Research,84(1 − 2):17 − 36. DOI: 10.1016/S0301-9268(96)00058-7
[23] 冯连君,储雪蕾,张启锐,等,2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘,10(4):539 − 544. DOI: 10.3321/j.issn:1005-2321.2003.04.019 Feng L J,Chu X L,Zhang Q R,et al.,2003. CIA (chemical index of alteration) and its application in the Neoproterozoic clastic rocks[J]. Geoscience Frontiers,10(4):539 − 544 (in Chinese with English abstract). DOI: 10.3321/j.issn:1005-2321.2003.04.019
[24] 顾尚义,2013. 新元古代南沱冰期气候波动的沉积地球化学记录−来自贵州剑河五河剖面的证据[J]. 高校地质学报,19:72 − 73. Gu S Y,2013. Sedimentary geochemical records of climate fluctuations during the Neoproterozoic Nantuo glaciation: Evidence from the Wuhe Section of Jianhe,Guizhou Province[J]. Geological Journal of China Universities,19:72 − 73 (in Chinese with English abstract).
[25] 顾尚义,毕晨时,2015. 贵州地区南沱冰期的冰下化学风化作用及其对海洋磷富集的意义[J]. 贵州大学学报:自然科学版,32(6):22 − 28. Gu S Y,2015. Subglacial chemical weathering and its significance in Marine phosphorus enrichment during Nantuo Ice Age in Guizhou Province[J]. Journal of Guizhou University (Natural Science Edition),32(6):22 − 28 (in Chinese with English abstract).
[26] 官开萍,田力,安志辉,等,2016. 湖北神农架西部南华纪地层序列及其区域对比[J]. 地学前缘,23(6):236 − 244. Guan K P,Tian L,An Z H,et al.,2016. Stratigraphic succession of the Nanhuan Period in the Shennongjia area in western Hubei and its regional correlation[J]. Earth Science Frontiers,23(6):236 − 244 (in Chinese with English abstract).
[27] Gu S Y,Fu Y,Long J,et al.,2019. Predominantly ferruginous conditions in south china during the marinoan glaciation:Insight from REE geochemistry of the SYN-glacial dolostone from the Nantuo Formation in Guizhou province,China[J]. Minerals,9(6):348. DOI: 10.3390/min9060348
[28] Griffiths H J,Whittle R J,Mitchell E G,2023. Animal survival strategies in Neoproterozoic ice worlds[J]. Global Change Biology,29(1):10 − 20. DOI: 10.1111/gcb.16393
[29] Harnois L,1988. The CIW index:A new chemical index of weathering[J]. Sedimentary Geology,55(3-4):319 − 322. DOI: 10.1016/0037-0738(88)90137-6
[30] Hoffman P F,Kaufman A J,Halverson G P,et al.,1998. A Neoproterozoic Snowball Earth[J]. Science,281(5381):1342 − 1346. DOI: 10.1126/science.281.5381.1342
[31] Hyde W T,Crowley T J,Baum S K,et al.,2000. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model[J]. Nature,405(6785):425 − 429. DOI: 10.1038/35013005
[32] Hoffman P F,Schrag D P,2002. The snowball Earth hypothesis:testing the limits of global change[J]. Terra nova,14(3):129 − 155. DOI: 10.1046/j.1365-3121.2002.00408.x
[33] Halverson G P,Dudás F Ö,Maloof A C,et al.,2007. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,256(3 − 4):103 − 129. DOI: 10.1016/j.palaeo.2007.02.028
[34] Hoffman P F,Li Z X,2009. A palaeogeographic context for Neoproterozoic glaciation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,277(3 − 4):158 − 172.
[35] Hossain H M Z ,Roser B P ,Kimura J I,2010. Petrography and whole-rock geochemistry pf the Tertiary Sylhet succession,northeastern Bengal basin,Bangladesh:provenance and source area weathering[J]. Sedimentary Geology,228(3 − 4):171 − 183. DOI: 10.1016/j.sedgeo.2010.04.009
[36] Hood A V S,Wallace M W,Drysdale R,2011. Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes[J]. Geology,39(9):871 − 874. DOI: 10.1130/G32119.1
[37] Hu J,Wang J S,Chen H R,et al.,2011. Multiple cycles of glacier advance and retreat during the Nantuo (Marinoan) glacial termination in the Three Gorges area[J]. Frontiers of Earth Science,6(1):101 − 108.
[38] Hoffman P F,2016. Cryoconite pans on Snowball Earth:supraglacial oases for Cryogenian eukaryotes?[J]. Geobiology,14(6):531 − 542. DOI: 10.1111/gbi.12191
[39] Huang K J,Teng F Z,Shen B,et al.,2016. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation[J]. Proceedings of the National Academy of Sciences,113(52):14904 − 14909. DOI: 10.1073/pnas.1607712113
[40] 胡蓉,李双庆,王伟,等,2016. 扬子北部三峡地区南沱组冰碛岩的物源特征:锆石年龄和地球化学证据[J]. 地球科学,41(10):1630 − 1654. Hu R,Li S Q,Wang W,et al.,2016. Source characteristics of tillite the Nantuo formation in Three Gorges,northern Yangtze Block: Evidences from zircon ages and geochemical composition [J]. Earth Science,41(10):1630 − 1654 (in Chinese with English abstract).
[41] Hawes I,Jungblut A D,Matys E D,et al.,2018. The “Dirty Ice” of the McMurdo Ice Shelf:Analogues for biological oases during the Cryogenian[J]. Geobiology,16(4):369 − 377. DOI: 10.1111/gbi.12280
[42] Hu J,Li C,Tong J,et al.,2020. Glacial origin of the Cryogenian Nantuo Forma tion in eastern Shennongjia area (South China):Implications for macroalgal survival[J]. Precambrian Research,351:105969. DOI: 10.1016/j.precamres.2020.105969
[43] 胡军,2021. 华南神农架地区新元古代南沱组沉积古地理和古海洋环境研究[D]. 北京:中国地质大学. Hu J,2021. Sedimentary characteristics,paleogeography and paleomarine environment of the Neoproterozoic Nantuo Formation in Shennongjia area(South China)[D]. Beijing:China University of Geosciences (in Chinese with English abstract).
[44] Johnson B W,Poulton S W,Goldblatt C,2017. Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth[J]. Nature Communications,8(1):1316.
[45] 江新胜,崔晓庄,卓皆文,等,2020. 华南扬子陆块西缘新元古代康滇裂谷盆地开启时间新证据[J]. 沉积与特提斯地质,40(3):31 − 37. Jiang X S,Cui X Z,Zhuo J W,et al.,2020. New evidence for the opening time of the Neoproterozoic Kangdian rift basin,western Yangtze Block,South China[J]. Sedimentary Geology and Tethyan Geology,40(3):31 − 37 (in Chinese with English abstract).
[46] 季泽龙,刘晓峰,2023. 峡东地区成冰系南沱组新认识[J]. 地质学报,97(6):1753 − 1765. Ji Z L,Liu X F,2023. New insights about the Cryogenian Nantuo Formation in the East Yangtze Gorges area[J]. Acta Geologica Sinica,97(6):1753 − 1765 (in Chinese with English abstract).
[47] Kirschvink J L,1992. Late Proterozoic low-latitude global glaciation:The snowball Earth. The Proterozoic Biosphere:A multidisciplinary study[J].New York: Cambridge University Press: 51 − 52.
[48] 旷红伟,2017. 神农架成冰系“南沱组”宏观藻应属于大塘坡组的新证据[J]. 中国地质,44(6):1257 − 1258. DOI: 10.12029/gc20170617 Kuang H W,2017. Benthic macroscopic phototrophs of the Cryogenian in Shennongjia that survived in interglacial period between Sturtian and Marinoan glaciations[J]. Geology in China,44(6):1257 − 1258 (in Chinese with English abstract). DOI: 10.12029/gc20170617
[49] 刘英俊, 曹励明, 李兆麟, 等, 1984. 元素地球化学[M]. 北京: 科学出版社. Le Heron D P,Craig J,2012. Neoproterozoic deglacial sediments and their hydrocarbon source rock potential[J]. Geological Society,368:381 − 393.
[50] Le Heron D P,2015. The significance of ice-rafted debris in Sturtian glacial successions[J]. Sedimentary Geology,322:19 − 33.
[51] Le Heron D P,Busfield M E,2016. Pulsed iceberg delivery driven by Sturtian ice sheet dynamics:An example from Death Valley,California[J]. Sedimentology,63(2):331 − 349. DOI: 10.1016/j.sedgeo.2015.04.001
[52] Lang X G,Chen J,Cui H,et al.,2018. Cyclic cold climate during the Nantuo Glaciation:Evidence from the Cryogenian Nantuo Formation in the Yangtze Block,South China[J]. Precambrian Research,310:243 − 255. DOI: 10.1111/sed.12225
[53] 李明龙,2019. 鄂西走马地区南华纪古城期−南沱早期古气候和古氧相演化:来自细碎屑岩元素地球化学的证据[J]. 地质学报,93(9):2158 − 2170. DOI: 10.1016/j.precamres.2018.03.004 Li M L,2019. Paleoclimate and paleo-oxygen evolution during the Gucheng Period-early Nantuo Period of Nanhua System in the Zouma area,West Hubei:evidence from element geochemistry of fine clastic rocks[J]. Acta Geologica Sinica,93(9):2158 − 2170 (in Chinese with English abstract). DOI: 10.1016/j.precamres.2018.03.004
[54] 李路顺,汪泽成,肖安成,等,2021. 扬子北缘南华纪裂谷系统:基于重力异常及沉积学证据[J]. 地球科学,46(10):3496 − 3508. Li L S,Wang Z C,Xiao A C,et al.,2021. Rift system in the northern Yangtze Block during Nanhua period:Implications from gravity anomaly and sedimentology[J]. Journal of Earth Science,46(10):3496 − 3508 (in Chinese with English abstract).
[55] 李明龙,杨波涌,郑顺德,等,2021. 鄂西走马地区南华纪大塘坡间冰期古气候研究[J]. 地质论评,67(1):39 − 55. Li M L,Yang B Y,Zheng S D,et al.,2021. Study on the paleoclimate during the Datangpo interglacial stage of the Nanhua Period in the Zouma area,western Hubei Province[J]. Geological Review,67(1):39 − 55 (in Chinese with English abstract).
[56] 刘春来,熊国庆,董国明,2021. 扬子北缘奥陶纪−志留纪之交泥岩地球化学特征及其源区、构造背景[J]. 地质论评,67(5):1263 − 1279. Liu C L,Xiong G Q,Dong G M,2021. Geochemical characteristics of mudstones and its provenance and tectonic setting during the Ordovician-Silurian period in northern margin of Yangtze Block[J]. Geological Review,67(5):1263 − 1279 (in Chinese with English abstract).
[57] 刘春来, 熊国庆, 董国明, 2021. 扬子北缘奥陶纪−志留纪之交泥岩地球化学特征及其源区、构造背景[J]. 地质论评, 67(5): 1263 − 1279. Liu Y J,Cao L M,Li Z L,et al.,1984. Element geochemistry[M]. Beijing:Science Press.
[58] Liu P J,Li X H,Chen N M,et al.,2015. New SIMS U-Pb zircon age and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin,60(10):958 − 963.
[59] Lan Z W,Huyskens M H,Le Hir G,et al.,2022. Massive volcanism may have foreshortened the Marinoan snowball Earth[J]. Geophysical Research Letters,49(6):0094 − 8276. DOI: 10.1007/s11434-015-0790-3
[60] Lan Z W,Huyskens M H,Le Hir G,et al.,2022. Massive volcanism may have foreshortened the Marinoan snowball Earth[J]. Geophysical Research Letters,49(6):e2021GL097156.
[61] Lu L,Mok B W Y,Chen L L,et al.,2022. Neutralization of severe acute respiratory syndrome coronavirus 2 omicron variant by sera from BNT162b2 or CoronaVac vaccine recipients[J]. Clinical Infectious Diseases,75(1):822 − 826. DOI: 10.1029/2021GL097156
[62] Li J,Li X G,Wu C,et al.,2023. Geochronology and geochemistry of the Cryogenian sedimentary rocks and Early Paleozoic mafic dykes of the South Qinling belt:Implications for the tectonic evolution of the northwestern South China craton[J]. Lithos,444(445):107129. DOI: 10.1093/cid/ciab1041
[63] 郎咸国,陈家乐,2023. 沉积与特提斯地质,43(3):651−660. Lang X G,Chen J L,2023. Research progress on environmental effects of the Cryogenian global glaciation[J]. Sedimentary Geology and Tethyan Geology,43(3):651−660 (in Chinese with English abstract).
[64] 兰中伍,2023. 华南南华系年代地层学研究进展[J]. 沉积与特提斯地质,43(1):180 − 187. Lan Z W,2023. Research progress on the chronostratigraphic study of Nanhua System in South China[J]. Sedimentary Geology and Tethyan Geology,43(1):180 − 187 (in Chinese with English abstract).
[65] 兰中伍, 2023. 华南南华系年代地层学研究进展[J]. 沉积与特提斯地质, 43(1): 180 − 187. DOI: 10.3969/j.issn.1009-3850.2023.01.014 McLennan S M,1989. Rare Earth Elements in sedimentaw rocks:Influence of provenance and sedimenta y processes[J]. Review in Mineralogy,21(1):169 − 200. DOI: 10.3969/j.issn.1009-3850.2023.01.014
[66] MacDonald F A,Schmitz M D,Crowley J L,et al.,2010. Calibrating the cryogenian[J]. Science,327(5970):1241 − 1243.
[67] 毛黎光,肖安成,魏国齐,等,2011. 扬子地块北缘晚古生代−早中生代裂谷系统的分布及成因分析[J]. 岩石学报,27(3):721 − 731. DOI: 10.1126/science.1183325 Mao L G,Xiao A C,Wei G Q,et al.,2011. Distribution and origin of the Late Paleozoic-Mesozoic rift systems in the northern margin of the Yangtze block[J]. Acta Petrologica Sinica,27(3):721 − 731 (in Chinese with English abstract). DOI: 10.1126/science.1183325
[68] 牟传龙,葛祥英,余谦,等,2019. 川西南地区五峰−龙马溪组黑色页岩古气候及物源特征:来自新地2井地球化学记录[J]. 古地理学报,21(5):835 − 854. Mou C L,Ge X Y,Yu Q,et al.,2019. Palaeoclimatology and provenance of black shales from Wufeng-Longmaxi Formations in southwestern Sichuan Province:From geochemical records of Well Xindi-2[J]. Journal of Palaeogeography,21(5):835 − 854 (in Chinese with English abstract).
[69] 毛帆,裴先治,李瑞保,等,2021. 扬子板块西北缘碧口微地块南华系碎屑锆石U-Pb年龄及其物源示踪[J]. 沉积与特提斯地质,41(1):41 − 57. DOI: 10.7605/gdlxb.2019.05.057 Mao F,Pei X Z,Li R B,et al.,2021. The LA-ICP-MS U-Pb dating of detrital zircons from the Nanhua System in Bikou Terrane,northwestern margin of Yangtze Block[J]. Sedimentary Geology and Tethyan Geology,41(1):41 − 57 (in Chinese with English abstract). DOI: 10.7605/gdlxb.2019.05.057
[70] 毛帆, 裴先治, 李瑞保, 等, 2021. 扬子板块西北缘碧口微地块南华系碎屑锆石U-Pb年龄及其物源示踪[J]. 沉积与特提斯地质, 41(1): 41 − 57. Ma H R,Shen B,Lang X G,et al.,2022. Active biogeochemical cycles during the Marinoan global glaciation[J]. Geochimica et Cosmochimica Acta,321:155 − 169.
[71] Ma X C,Wang J S,Wang Z,et al.,2023. Geochronological constraints on Cryogenian ice ages:Zircon U–Pb ages from a shelf section in South China[J]. Global and Planetary Change,222:104071.
[72] Nesbitt H W,Young G M,1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,299(5885):715 − 717. DOI: 10.1016/j.gloplacha.2023.104071
[73] Nesbitt H W,Young G M,1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica Cosmochimic Acta,48(7):1523 − 1534. DOI: 10.1038/299715a0
[74] Nelson L L,Smith E F,Hodgin E B,et al.,2020. Geochronological constraints on Neoproterozoic rifting and onset of the Marinoan glaciation from the Kingston Peak Formation in Death Valley,California (USA)[J]. Geology,48(110):1083 − 1087. DOI: 10.1016/0016-7037(84)90408-3
[75] Peltier W R,Liu Y,Crowley J W,2007. Snowball Earth prevention by dissolved organic carbon remineralization[J]. Nature,450(7171):813 − 818.
[76] Pierrehumbert R T,Abbot D S,Voigt A,et al.,2011. Climate of the Neoproterozoic[J]. Annual Review of Earth and Planetary Sciences,39:417 − 460. DOI: 10.1038/nature06354
[77] 谯文浪,汪建国,陈武,等,2013. 贵州丹寨地区南华系地层地球化学特征及其对古气候,古环境的意义[J]. 地质科学,48(3):847 − 859. DOI: 10.1146/annurev-earth-040809-152447 Jiao W L,Wang J G,Chen W,et al.,2013. Geochemistry of Nanhuan sedimentary rocks in Danzhai,southeast Guizhou and implications for changes of paleoenvironment and palaeoclimate[J]. Chinese Journal of Geology,48(3):847 − 859 (in Chinese with English abstract). DOI: 10.1146/annurev-earth-040809-152447
[78] 齐靓,徐亚军,杜远生,等,2023. 华夏地块新元古代沉积记录与超大陆重建[J]. 沉积与特提斯地质,43(1):188 − 211. DOI: 10.3969/j.issn.0563-5020.2013.03.020 Qi L,Xu Y J,Du Y S,et al.,2023. Neoproterozoic sedimentary records in the Cathaysia Block and their implications for the supercontinent reconstruction[J]. Sedimentary Geology and Tethyan Geology,43(1):188 − 211 (in Chinese with English abstract). DOI: 10.3969/j.issn.0563-5020.2013.03.020
[79] 齐靓, 徐亚军, 杜远生, 等, 2023. 华夏地块新元古代沉积记录与超大陆重建[J]. 沉积与特提斯地质, 43(1): 188 − 211. DOI: 10.3969/j.issn.1009-3850.2023.01.015 Rieu R,Allen P A,Plotze M,et al.,2007a. Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession,Mirbat area,south Oman:Implications for paleoweathering conditions[J]. Precambrian Research,154(3-4):248 − 265. DOI: 10.3969/j.issn.1009-3850.2023.01.015
[80] Rose B E J,2015. Stable "Waterbelt" climates controlled by tropical ocean heat transport:A nonlinear coupled climate mechanism of relevance to Snowball Earth[J]. Journal of Geophysical Research:Atmospheres,120(4):1404 − 1423. DOI: 10.1016/j.precamres.2007.01.003
[81] Sun S S,McDonough W F,1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society London Special Publications,42(1):313 − 345.
[82] 孙娇鹏,陈世悦,彭渊,等,2016. 欧龙布鲁克地块新元古代早期冰川事件:来自CIA指数的证据[J]. 地质论评,62(1):29 − 36. DOI: 10.1144/GSL.SP.1989.042.01.19 Sun J P,Chen S Y,Peng Y,et al.,2016. Early Neoproterozoic Glacier Event in Oulongbuluke Block:Evidence from CIA Index[J]. Geological Review,62(1):29 − 36 (in Chinese with English abstract). DOI: 10.1144/GSL.SP.1989.042.01.19
[83] 沈洪娟,2020. 贵州东部南沱冰期碳循环研究[D]. 贵州:贵州大学. Shen H J,2020. A study on carbon cycle of Nantuo ice age in eastern Guizhou Province,China[D]. Guizhou:Guizhou University (in Chinese with English abstract).
[84] 隋佩珊,2021. 冰碛岩对中国新元古代古沉积环境与大陆上地壳平均成分的制约−以华北罗圈组及华南南沱组为例[D]. 中国科学院大学. Sui P S,2021. Constraints of diamictite on Neoproterozoic paleoenvironment and the upper crust composition of China-a case study of Luoquan Formation in North China and Nantuo Formation in South China[D]. University of Chinese Academy of Sciences (in Chinese with English abstract).
[85] 隋佩珊, 2021. 冰碛岩对中国新元古代古沉积环境与大陆上地壳平均成分的制约−以华北罗圈组及华南南沱组为例[D]. 中国科学院大学. Song H Y,An Z H,Ye Q,et al.,2023. Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation[J]. Nature Communications,14:1564.
[86] 唐将,林源,2002. 南秦岭大巴山地区的下震旦统及前震旦系[J]. 中国地质,29(2):143 − 146. DOI: 10.1038/s41467-023-37172-x Tang J,Lin Y,2002. The lower Sinian and pre-Sinian of the Daba Mountain area of the South Qinling region[J]. Geology in China,29(2):143 − 146 (in Chinese with English abstract). DOI: 10.1038/s41467-023-37172-x
[87] 唐婷婷,牟军,王安华,等,2019. 贵州铜仁地区南华系铁丝坳组−南沱组沉积环境及古气候演变[J]. 贵州学报,37(6):67 − 73. DOI: 10.3969/j.issn.1000-3657.2002.02.007 Tang T T,Mou J,Wang A H,et al.,2019. Sedimentary environment and paleoclimate research of Tiesi’ao Formation-Nantuo Formation in Tongren,Guizhou[J]. Guizhou Science,37(6):67 − 73 (in Chinese with English abstract). DOI: 10.3969/j.issn.1000-3657.2002.02.007
[88] 王剑,刘宝珺,潘桂棠,2001. 华南新元古代裂谷盆地演化:Rodinia 超大陆解体的前奏[J]. 矿物岩石,21(3):135 − 145. Wang J,Liu B J,Pan G T,2001. Neoproterozoic rifting history of South China:Significance to Rodinia breakup[J]. Mineralogy Petrology,21(3):135 − 145 (in Chinese with English abstract).
[89] 王自强,尹崇玉,高林志,等,2006. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论[J]. 地质论评,52(5):577 − 585. DOI: 10.3969/j.issn.1001-6872.2001.03.021 Wang Z Q,Ying C Y,Gao L Z,et al.,2006. The character of the chemical index of alteration and discussion of subdivision and correlation of the Nanhua System in Yichang area[J]. Geological Review,52(5):577 − 585 (in Chinese with English abstract). DOI: 10.3969/j.issn.1001-6872.2001.03.021
[90] 王自强,2009. 黔南−桂北地区南华系化学地层特征[J]. 地球学报,30,(4):465 − 474. DOI: 10.3321/j.issn:0371-5736.2006.05.008 Wang Z Q,2009. Chemostratigraphic characteristics of Nanhua System in Southern Guizhou-Northern Guangxi Area[J]. Acta Geoscientica Sinica,30,(4):465 − 474 (in Chinese with English abstract). DOI: 10.3321/j.issn:0371-5736.2006.05.008
[91] 吴忠银,顾尚义,2019. 华南新元古代南沱杂砾岩中富钾现象的研究−以贵州松桃南沱组为例[J]. 贵州大学学报:自然科学版,36(5):43 − 49. DOI: 10.3321/j.issn:1006-3021.2009.04.007 Wu Z Y,2019. Potassium enrichment of diamictite in Neoproterozoic Nantuo glaciation in South China:An example from the Cryogenian Nantuo Formation in Songtao,Guizhou Province[J]. Journal of Guizhou University (Natural Sciences),36(5):43 − 49 (in Chinese with English abstract). DOI: 10.3321/j.issn:1006-3021.2009.04.007
[92] 吴黎军,李明龙,陈林,等,2019. 鄂西走马地区ZK701南华系大塘坡组主量元素地球化学对古气候的指示[J]. 河南理工大学学报:自然科学版,38(6):47 − 54. Wu L J,Li M L,Chen L,et al.,2019. Geochemistry characteristics of major elements and their indication to paleoclimate in the Datangpo formation of Nanhua system of ZK701 drillcore in Zouma area of western Hubei province[J]. Journal of Henan Polytechnic University (Natural Science),38(6):47 − 54 (in Chinese with English abstract).
[93] 肖安成,魏国齐,沈中延,等,2011. 扬子地块与南秦岭造山带的盆山系统与构造耦合[J]. 岩石学报,27(3):601 − 611. Xiao A C,Wei G Q,Shen Z Y,et al.,2011. Basin-mountain system and tectonic coupling between Yangtze block and South Qinling orogen[J]. Acita Peirologica Sinica,27(3):601 − 611 (in Chinese with English abstract).
[94] 肖安成, 魏国齐, 沈中延, 等, 2011. 扬子地块与南秦岭造山带的盆山系统与构造耦合[J]. 岩石学报, 27(3): 601 − 611. Xiang Z J,Yan Q R,White J D L,et al.,2015. Geochemical constraints on the provenance and depositional setting of Neoproterozoic volcaniclastic rocks on the northern margin of the Yangtze Block,China:Implications for the tectonic evolution of the northern margin of the Yangtze Block[J]. Precambrian Research,264:140 − 155.
[95] 熊国庆,王剑,李园园,等,2017. 大巴山西段上奥陶统−下志留统五峰组−龙马溪组斑脱岩锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质,37(2):46 − 58. DOI: 10.1016/j.precamres.2015.04.012 Xiong G Q,Wang J,Li Y Y,et al.,2017. Zircon U-Pb dating and geological significance of the bentonites from the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in western Daba Mountains[J]. Sedimentary Geology and Tethyan Geology,37(2):46 − 58 (in Chinese with English abstract). DOI: 10.1016/j.precamres.2015.04.012
[96] 徐小涛,邵龙义,2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报,20(3):515 − 522. DOI: 10.3969/j.issn.1009-3850.2017.02.006 Xu X T,Shao L Y,2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography,20(3):515 − 522 (in Chinese with English abstract). DOI: 10.3969/j.issn.1009-3850.2017.02.006
[97] 熊国庆,王剑,李园园,等,2019. 南大巴山东段上奥陶统五峰组−下志留统龙马溪组钾质斑脱岩锆石U-P b年龄及其构造意义[J]. 地质学报,93(4):843 − 864. DOI: 10.7605/gdlxb.2018.03.038 Xiong G Q,Wang J,Li Y Y,et al.,2019. Zircon U-Pb dating of K-bentonite from Late Ordovician Wufeng Formation and Earlier Silurian Longmaxi Formation in the eastern section of south Dabashan and its tectonic signification[J]. Acta Geologica Sinica,93(4):843 − 864 (in Chinese with English abstract). DOI: 10.7605/gdlxb.2018.03.038
[98] 熊国庆, 王剑, 李园园, 等, 2019. 南大巴山东段上奥陶统五峰组−下志留统龙马溪组钾质斑脱岩锆石U-P b年龄及其构造意义[J]. 地质学报, 93(4): 843 − 864. Young G M,Wayne Nesbitt H,1999. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic),Ontario,Canada:A chemostratigraphic approach[J]. Geological Society of America Bulletin,111(2):264 − 274.
[99] Ye Q,Tong J N,Xiao S H,et al.,2015. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth[J]. Geology,43(6):507 − 510. DOI: 10.1130/0016-7606(1999)111<0264:PAPOTG>2.3.CO;2
[100] Ye Y T,Wang H J,Zhai L N,2018. Contrasting Mo-U enrichments of the basal Datangpo Formation in South China:Implications for the Cryogenian interglacial ocean redox[J]. Precambrian Research,315:66 − 74. DOI: 10.1130/G36640.1
[101] Yan B,Shen W B,Zhao N N,et al.,2020. Constraint on the nature of Marinoan glaciation:Cyclic sedimentary records of the Nantuo Formation,South China[J]. Journal of Asian Earth Sciences,189:104137. DOI: 10.1016/j.precamres.2018.07.013
[102] Ye Y T,Wang X M,Wang H J,et al.,2024. Exploring climate variability during the Marinoan glaciation:A study of black shale geochemistry[J]. Gondwana Research,128:315 − 324.
[103] 周传明,袁训来,肖书海,2002. 扬子地台新元古代陡山沱期磷酸盐化生物群[J]. 科学通报,47:1734 − 1739. Zhou C M,Yuan X L,Xiao S H,2002. The Neoproterozoic Doushantuo phosphorylation biota in the Yangtze Platform[J]. Chinese Scientia Bulletin,47:1734 − 1739 (in Chinese with English abstract).
[104] 周传明, 袁训来, 肖书海, 2002. 扬子地台新元古代陡山沱期磷酸盐化生物群[J]. 科学通报, 47: 1734 − 1739. DOI: 10.3321/j.issn:0023-074X.2002.22.013 Zhang S H,Jiang G G,Han Y G,et al.,2008. The age of the Nantuo Formation and Nantuo glaciation in South China[J]. Terra Nova,20(4):289 − 294. DOI: 10.3321/j.issn:0023-074X.2002.22.013
[105] 赵妮娜,2016. 华南新元古代冰期沉积的岩石地层及年代学研究[D]. 北京:中国地质大学. DOI: 10.1111/j.1365-3121.2008.00819.x Zhao N N,2016. The lithostratigraphy and geochronology of Neoproterozoic glaciogenic sediments in South China[D]. Beijing:China University of Geosciences (in Chinese with English abstract). DOI: 10.1111/j.1365-3121.2008.00819.x
[106] 赵思凡,顾尚义,沈洪娟,等,2020. 华南地区南沱冰期海洋氧化还原环境研究−来自贵州松桃南沱组白云岩稀土元素地球化学的指示[J]. 沉积学报,38(6):1140 − 1151. Zhao S F,Gu S Y,Shen H J,et al.,2020. Ocean redox environment in the Nantuo Ice Age of South China:An indication of the rare earth element geochemistry in the dolomites from the Nantuo Formation in Guizhou province[J]. Acta Sedimentologica Sinica,38(6):1140 − 1151 (in Chinese with English abstract).
[107] 刘英俊,曹励明,李兆麟,等,1984. 元素地球化学[M]. 北京:科学出版社. Zhao S F, Gu S Y, Shen H J, et al., 2020. Ocean redox environment in the Nantuo Ice Age of South China: An indication of the rare earth element geochemistry in the dolomites from the Nantuo Formation in Guizhou province[J]. Acta Sedimentologica Sinica, 38(6): 1140 − 1151.
-
其他相关附件