Shale gas preservation conditions and their carbon isotope constraints: A case study of the Wufeng-Longmaxi Shale in the Upper Yangtze Block
-
摘要:
天然气碳同位素对研究油气保存条件有着重要的指示意义。本文以上扬子长宁、涪陵、正安地区五峰—龙马溪组页岩为例,通过页岩气组分分析、单体碳同位素分析,探讨造成不同地区碳同位素倒转程度(δ13C1-δ13C2)差异的原因,重建五峰—龙马溪组页岩气保存条件的时空动态演化过程,并揭示复杂构造变形区保存条件对页岩气富集的制约。结果表明:(1)高—过成熟阶段干酪根裂解气与原油二次裂解气混合是导致五峰—龙马溪组页岩烃类气体碳同位素发生倒转的主要原因。(2)原油二次裂解气的贡献程度不同导致不同地区烷烃碳同位素倒转程度(δ13C1-δ13C2)存在一定差异;整体上,自盆外正安地区到盆内涪陵、长宁地区,原油二次裂解气的占比依次增大,碳同位素倒转程度增大,页岩含气量也依次增加,指示页岩系统的封闭性逐渐变好。(3)以δ13C1为约束的页岩系统保存条件定量评价模型显示,五峰—龙马溪组页岩气系统的开放程度(θ)在正安地区约66%~82%,涪陵地区约70%~77%,长宁地区约65%~70%。(4)中新生代上扬子地区发生差异构造变形,使得四川盆地外五峰—龙马溪组页岩系统的封闭性遭到更严重的破坏,促使油气大量运移和排出,保存条件相对较差。在构造变形比较强烈的地区,良好的保存条件对页岩储层的形成以及页岩气的富集至关重要。
Abstract:The carbon isotope composition of natural gas provides significant insights into the preservation conditions of oil and gas. This study focuses on the Wufeng-Longmaxi Formation in the Changning, Fuling, and Zheng'an areas, analyzing shale gas components and the carbon isotopes of monomer hydrocarbons to understand the variation in alkane carbon isotope reversal (δ13C1-δ13C2) in different areas. We reconstruct the spatial and temporal evolution of preservation conditions in the Wufeng-Longmaxi Shale of the Yangtze Block and explore how preservation conditions affect shale gas enrichment. The results show that: (1) Carbon isotope reversal of hydrocarbons is commonly observed in the Wufeng-Longmaxi Shale, primarily caused by the mixing of secondary cracking gas with primary cracking gas during the high or post-maturation stage. (2) The mixing ratio of these two types of cracking gases is the major factor controlling the degree of carbon isotope reversal. As the proportion of secondary cracking gas increases, the extent of carbon isotope reversal and shale gas content gradually increase from the periphery towards the interior of the Sichuan Basin, indicating relatively good sealing conditions within the basin. (3) A quantitative evaluation model based on δ13C1 shows that the system openness (θ) of the Wufeng-Longmaxi shale ranges from 66% to 82% in the Zheng'an area, 70% to 77% in the Fuling area, and 65% to 70% in the Changning area. (4) Differential structural deformation of the Meso-Cenozoic strata in the Upper Yangtze Region has severely damaged the sealing conditions outside the Sichuan Basin, facilitating hydrocarbon migration and expulsion, and the preservation conditions are relatively poor. Therefore, good preservation conditions are crucial for shale gas enrichment, particularly in regions that have undergone extensive deformation.
-
Keywords:
- shale gas /
- preservation conditions /
- carbon isotopic reversal /
- gas content /
- Wufeng-Longmaxi Shale
-
-
图 1 研究区地质概况
A、B. 研究区区域位置及构造位置(据Guo et al., 2022修改);C. 长宁地区五峰—龙马溪组页岩埋藏史与热演化史(据Liu et al., 2021修改);D. 涪陵地区五峰—龙马溪组页岩埋藏史与热演化史(据Yang et al., 2017修改);E. 正安地区五峰—龙马溪组页岩埋藏史与热演化史(据Shi et al., 2019修改);F. 研究区构造模式
Figure 1. Geological settings of the study area
图 2 五峰—龙马溪组碳同位素倒转图(据Shi et al., 2022)
Figure 2. Variation of ethane δ13C as a function of methane δ13C for gases from the Wufeng-Longmaxi shales (after Shi et al., 2022)
图 8 AY1-2井、AY2井、AY3井构造位置(A)及翼间角空间变化(B)(据Guo et al., 2022修改)
Figure 8. The locations (A) and spatial variation of interlimb angles (B) of wells AY1-2, AY2, and AY3 (modified from Guo et al., 2022)
表 1 五峰—龙马溪组气体组分和碳同位素数据
Table 1 Natural gas composition and stable isotope data for the Wufeng-Longmaxi Formation
样品 气体组分/mol% δ13CVPDB/‰ N2 C1 C2 C3 CO2 C1 C2 CO2 C1-C2 AY1-2 0.67 98.36 0.68 0.02 0.19 -34.78 -38.47 -5.10 3.69 AY1-4 0.70 98.25 0.71 0.02 0.24 -34.57 -38.42 -4.86 3.85 AY2 0.70 98.35 0.56 0.01 0.30 -35.87 -38.33 -5.33 2.46 AY3 0.69 98.35 0.72 0.01 0.14 -34.91 -38.42 -3.8 3.51 CN1 0.35 98.84 0.48 0.01 0.27 -27.76 -33.52 n.d. 5.76 CN2 0.32 98.82 0.44 0.01 0.05 -28.83 -34.38 n.d. 5.55 CN3 0.37 98.72 0.43 0.01 0.04 -27.62 -32.87 n.d. 5.25 CN4 0.32 98.73 0.54 0.02 0.05 -27.39 -32.80 n.d. 5.41 CN5 0.41 98.42 0.45 0.01 0.38 -27.26 -32.89 n.d. 5.63 FL1 0.89 97.82 0.43 0.01 0.61 -32.22 -36.60 1.46 4.38 FL2 0.87 97.78 0.44 0.01 0.68 -31.83 -36.46 0.57 4.63 FL3 0.57 98.22 0.51 0.01 0.60 -30.71 -34.96 3.53 4.25 FL4 0.72 98.12 0.42 0.01 0.65 -30.18 -34.30 2.92 4.12 FL5 0.88 98.14 0.47 0.01 0.40 -31.25 -36.06 5.11 4.81 FL6 0.62 98.43 0.41 0.01 0.45 -32.01 -36.36 1.66 4.35 FL7 0.69 98.28 0.41 0.01 0.52 -31.56 -35.57 2.54 4.01 FL8 1.36 93.16 0.06 n.d. 5.03 -27.98 -29.30 2.23 1.32 注:浓度误差为±0.01%,同位素误差为±0.01‰;“n.d.”代表未检出。 表 2 五峰—龙马溪组页岩甲烷散失效率
Table 2 Methane expulsion efficiency data of the Wufeng-Longmaxi shales
样品 F θ [CH4]in-place
/cm3(STP)·cm-3[CH4]expelled
/cm3(STP)·cm-336Ar
/mol%开放系统 封闭系统 最小值 最大值 最小值 最大值 AY1-2 0.529 0.90 0.66 0.68 11.20 21.74 23.80 6.1×10-8 AY1-4 0.534 0.91 0.68 0.70 11.75 24.97 27.42 7.5×10-8 AY2 0.526 0.90 0.79 0.81 6.62 24.90 28.22 9.8×10-8 AY3 0.502 0.86 0.80 0.82 5.85 23.40 26.65 1.1×10-7 CN1 0.672 / 0.65 0.67 13.35 24.79 27.10 4.9×10-8 CN2 0.654 / 0.67 0.68 12.78 25.95 27.16 6.9×10-8 CN3 0.675 / 0.66 0.69 12.45 24.17 27.71 5.7×10-8 CN4 0.679 / 0.68 0.70 12.68 26.95 29.59 4.7×10-8 CN5 0.681 / 0.66 0.67 13.00 25.24 26.39 7.2×10-8 FL1 0.587 / 0.76 0.77 8.89 28.15 29.76 7.7×10-7 FL2 0.596 / 0.70 0.72 10.78 25.15 27.72 5.5×10-6 FL3 0.618 / 0.74 0.76 9.95 28.32 31.51 5.5×10-7 FL4 0.629 / 0.72 0.75 10.35 26.61 31.05 5.3×10-7 FL5 0.608 / 0.71 0.74 10.68 26.15 30.40 4.8×10-6 FL6 0.592 / 0.73 0.75 10.38 28.06 31.14 2.2×10-7 FL7 0.601 / 0.71 0.74 10.10 24.73 28.75 2.2×10-7 FL8 0.669 / 0.90 0.94 2.70 24.30 42.30 3.2×10-5 -
[1] Burruss R C,Laughrey C D,2010. Carbon and hydrogen isotopic reversals in deep basin gas:Evidence for limits to the stability of hydrocarbons[J]. Organic Geochemistry,41(12):1285 − 1296. DOI: 10.1016/j.orggeochem.2010.09.008
[2] Byrne D J,Barry P H,Lawson M,et al.,2018. Determining gas expulsion vs retention during hydrocarbon generation in the Eagle Ford Shale using noble gases[J]. Geochimica et Cosmochimica Acta,241:240 − 254. DOI: 10.1016/j.gca.2018.08.042
[3] 陈斐然,段金宝,张汉荣,等,2020. 页岩气“压力系数”分级资源评价方法——以川东南上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油实验地质,42(3):405 − 414. DOI: 10.11781/sysydz202003405 Chen F R,Duan J B,Zhang H R,et al.,2020. Shale gas resource evaluation based on “pressure coefficient”:a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in southeastern Sichuan Basin[J]. Petroleum Geology & Experiment,42(3):405 − 414 (in Chinese with English abstract). DOI: 10.11781/sysydz202003405
[4] 董大忠,施振生,管全中,等,2018. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业,38(4):67 − 76. DOI: 10.3787/j.issn.1000-0976.2018.04.008 Dong D Z,Shi Z S,Guan Q Z,et al,2018. Progress,challenges and prospects of shale gas exploration in Wufeng-Longmaxi Formations,Sichuan Basin[J]. Natural Gas Industry,38(4):67 − 76 (in Chinese with English abstract). DOI: 10.3787/j.issn.1000-0976.2018.04.008
[5] 冯子齐,刘丹,黄士鹏,等,2016. 四川盆地长宁地区志留系页岩气碳同位素组成[J]. 石油勘探与开发,43(5):705 − 713. Feng Z Q,Liu D,Huang S P,et al.,2016. Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning area,Sichuan Basin[J]. Petroleum Exploration and Development,43(5):705 − 713 (in Chinese with English abstract).
[6] Feng W P,Wang F Y,Guan J,et al.,2018. Geologic structure controls on initial productions of lower Silurian Longmaxi shale in south China[J]. Marine and Petroleum Geology, 91:163 − 178.
[7] 郭旭升,2014. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报,88(7):1209 − 1218. Guo X S,2014. Rules of two-factor enrichment for marine shale gas in southern China——Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica,88(7):1209 − 1218 (in Chinese with English abstract).
[8] 郭旭升,胡东风,李宇平,等,2017. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发,44(4):481 − 491. DOI: 10.11698/PED.2017.04.01 Guo X S,Hu D F,Li Y P,et al.,2017. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development,44(4):481 − 491 (in Chinese with English abstract). DOI: 10.11698/PED.2017.04.01
[9] Guo X C,Liu R,Xu S,et al.,2022. Structural deformation of shale pores in the fold-thrust belt:The Wufeng-Longmaxi shale in the Anchang Syncline of Central Yangtze Block[J]. Advances in Geo-Energy Research,6(6):515 − 530. DOI: 10.46690/ager.2022.06.08
[10] 韩辉,李大华,马勇,等,2013. 四川盆地东北地区下寒武统海相页岩气成因:来自气体组分和碳同位素组成的启示[J]. 石油学报,34(3):453 − 459. DOI: 10.7623/syxb201303005 Han H,Li D H,Ma Y,et al.,2013. The origin of marine shale gas in the northeastern Sichuan Basin,China:implications from chemical composition and stable carbon isotope of desorbed gas[J]. Acta Petrolei Sinica,34(3):453 − 459 (in Chinese with English abstract). DOI: 10.7623/syxb201303005
[11] Hao F,Zou H Y,2013. Cause of shale gas geochemical anomalies and mechanisms for gas enrichment and depletion in high-maturity shales[J]. Marine and Petroleum Geology, 44:1 − 12.
[12] 贺永忠,向坤鹏,安亚运,等,2020. 黔北正安地区五峰组—龙马溪组页岩气地质特征及有利区预测[J]. 中国地质调查,7(3):21 − 29. He Y Z,Xiang K P,An Y Y,et al.,2020. Geological characteristics and favorable areas prediction of shale gas in Wufeng-Longmaxi Formation in Zheng' an area of Northern Guizhou[J]. Geological Survey of China,7(3):21 − 29 (in Chinese with English abstract).
[13] 胡东风,2019. 四川盆地东南缘向斜构造五峰组−龙马溪组常压页岩气富集主控因素[J]. 天然气地球科学,30(5):605 − 615. DOI: 10.11764/j.issn.1672-1926.2019.01.013 Hu D F,2019. Main controlling factors on normal pressure shale gas enrichments in Wufeng-Longmaxi Formations in synclines,southeastern Sichuan Basin[J]. Natural Gas Geoscience,30(5):605 − 615 (in Chinese with English abstract). DOI: 10.11764/j.issn.1672-1926.2019.01.013
[14] 胡东风,张汉荣,倪楷,等,2014. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业,34(6):17 − 23. Hu D F,Zhang H R,Ni K,et al.,2014. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry,34(6):17 − 23 (in Chinese with English abstract).
[15] Jacobsen S B,Kaufman A J,1999. The Sr,C and O isotopic evolution of Neoproterozoic seawater[J]. Chemical Geology,161(1-3):37 − 57. DOI: 10.1016/S0009-2541(99)00080-7
[16] 李英康,高建伟,韩健,等,2019. 扬子块体两侧造山带地壳推覆的地球物理证据及其地质意义[J]. 中国科学:地球科学,49(4):687 − 705. Li Y K,Gao J W,Han J,et al.,2019. Geophysical evidence for thrusting of crustal materials from orogenic belts over both sides of the Yangtze Block and its geological significance[J]. Science China Earth Sciences,49(4):687 − 705 (in Chinese with English abstract).
[17] 廖芸,郭艳琴,陈志鹏,等,2021. 烷烃碳同位素对页岩含气性的指示意义——以四川盆地及周缘龙马溪组为例[J]. 海相油气地质,26(3):224 − 230. DOI: 10.3969/j.issn.1672-9854.2021.03.004 Liao Y,Guo Y Q,Chen Z P,et al.,2021. Indicative significance of alkane carbon isotope to shale gas content:Taking Longmaxi Formation in Sichuan Basin and its surrounding areas as example[J]. Marine Origin Petroleum Geology,26(3):224 − 230 (in Chinese with English abstract). DOI: 10.3969/j.issn.1672-9854.2021.03.004
[18] 刘安,周鹏,陈孝红,等,2021. 运用方解石脉包裹体和碳氧同位素评价页岩气保存条件——以中扬子地区寒武系为例[J]. 天然气工业,41(2):47 − 55. Liu A,Zhou P,Chen X H,et al.,2021. Evaluation of shale gas preservation conditions using calcite vein inclusions and C/O isotopes:A case study on the Cambrian strata of Middle Yangtze area[J]. Natural Gas Industry,41(2):47 − 55 (in Chinese with English abstract).
[19] Liu W P,Wu J,Jiang H,et al.,2021. Cenozoic exhumation and shale-gas enrichment of the Wufeng-Longmaxi formation in the southern Sichuan Basin,western China[J]. Marine and Petroleum Geology. 125:104865.
[20] Ma X H,2018. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry,38(10):1 − 10 (in Chinese with English abstract).
[21] 马永生,蔡勋育,赵培荣,2018. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发,45(4):561 − 574. DOI: 10.11698/PED.2018.04.03 Ma Y S,Cai X Y,Zhao P R,2018. China's shale gas exploration and development:Understanding and practice[J]. Petroleum Exploration and Development,45(4):561 − 574 (in Chinese with English abstract). DOI: 10.11698/PED.2018.04.03
[22] 聂海宽,包书景,高波,等,2012. 四川盆地及其周缘下古生界页岩气保存条件研究[J]. 地学前缘,19(3):280 − 294. Nie H K,Bao S J,Gao B,et al.,2012. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery[J]. Earth Science Frontiers,19(3):280 − 294 (in Chinese with English abstract).
[23] Rooney M A,Claypool G E,Moses Chung H,1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons[J]. Chemical Geology,126(3):219 − 232.
[24] Shi S Y,Wang Y P,Sun Y,et al.,2019. The Burial and Thermal Histories of Wufeng-Longmaxi Shale of Well Anye-1,Zheng'an Area,North Guizhou[J]. IOP Conference Series:Earth and Environmental Science,360:012033. DOI: 10.1088/1755-1315/360/1/012033
[25] Shi X W,Kang S J,Luo C,et al.,2022. Shale gas exploration potential and reservoir conditions of the Longmaxi Formation in the Changning area,Sichuan Basin,SW China:Evidence from mud gas isotope logging[J]. Journal of Asian Earth Sciences,233:105239. DOI: 10.1016/j.jseaes.2022.105239
[26] 唐令,宋岩,赵志刚,等,2022. 四川盆地上奥陶统五峰组——下志留统龙马溪组页岩气藏超压成因及演化规律[J]. 天然气工业,42(10):37 − 53. Tang L,Song Y,Zhao Z G,et al.,2022. Origin and evolution of overpressure in shale gas reservoirs of the Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation in the Sichuan Basin[J]. Natural Gas Industry,42(10):37 − 53 (in Chinese with English abstract).
[27] Tang Y,Perry J K,Jenden P D,et al.,2000. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimica et Cosmochimica Acta,64(15):2673 − 2687. DOI: 10.1016/S0016-7037(00)00377-X
[28] Tilley B,McLellan S,Hiebert S,et al.,2011. Gas isotope reversals in fractured gas reservoirs of the western Canadian Foothills:Mature shale gases in disguise[J]. AAPG Bulletin,95(8):1399 − 1422. DOI: 10.1306/01031110103
[29] Tingay M R,Morley C K,Laird A,et al.,2013. Evidence for overpressure generation by kerogen-to-gas maturation in the northern Malay Basin[J]. AAPG Bulletin,97(4):639 − 672. DOI: 10.1306/09041212032
[30] 王濡岳,丁文龙,龚大建,等,2016. 黔北地区海相页岩气保存条件——以贵州岑巩区块下寒武统牛蹄塘组为例[J]. 石油与天然气地质,37(1):45 − 55. DOI: 10.11743/ogg20160107 Wang R Y,Ding W L,Gong D J,et al.,2016. Gas preservation conditions of marine shale in northern Guizhou area:A case study of the Lower Cambrian Niutitang Formation in the Cen'gong block,Guizhou Province[J]. Oil & Gas Geology,37(1):45 − 55 (in Chinese with English abstract). DOI: 10.11743/ogg20160107
[31] 王志刚,2015. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质,36(1):1 − 6. DOI: 10.11743/ogg20150101 Wang Z G,2015. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology,36(1):1 − 6 (in Chinese with English abstract). DOI: 10.11743/ogg20150101
[32] 武瑾,李玮,刘鑫,等,2022. 四川盆地海相页岩气碳同位素特征及指示意义[J]. 特种油气藏,29(5):36 − 41. DOI: 10.3969/j.issn.1006-6535.2022.05.005 Wu J,Li W,Liu X,et al.,2022. Characteristics and Indicative Significance of Carbon Isotopes of Marine Shale Gas in Sichuan Basin[J]. Special Oil & Gas Reservoirs,29(5):36 − 41 (in Chinese with English abstract). DOI: 10.3969/j.issn.1006-6535.2022.05.005
[33] 徐政语,姚根顺,梁兴,等,2015. 扬子陆块下古生界页岩气保存条件分析[J]. 石油实验地质,37(4):407 − 417. DOI: 10.11781/sysydz201504407 Xu Z Y,Yao G S,Liang X,et al.,2015. Shale gas preservation conditions in the Lower Paleozoic,Yangtze block[J]. Petroleum Geology and Experiment,37(4):407 − 417 (in Chinese with English abstract). DOI: 10.11781/sysydz201504407
[34] Xia X Y,Chen J,Braun R,et al.,2013. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J]. Chemical Geology,339:205 − 212. DOI: 10.1016/j.chemgeo.2012.07.025
[35] 杨平,余谦,牟传龙,等,2021. 四川盆地西南缘山地复杂构造区页岩气富集模式及勘探启示:一个页岩气新区[J]. 天然气工业,41(5):42 − 54. DOI: 10.3787/j.issn.1000-0976.2021.05.005 Yang P,Yu Q,Mou C L,et al.,2021. Shale gas enrichment model and exploration implications in the mountainous complex structural area along the southwestern margin of the Sichuan Basin:A new shale gas area[J]. Natural Gas Industry,41(5):42 − 54 (in Chinese with English abstract). DOI: 10.3787/j.issn.1000-0976.2021.05.005
[36] Yang R,He S,Hu Q H,et al.,2017. Geochemical characteristics and origin of natural gas from Wufeng-Longmaxi shales of the Fuling gas field,Sichuan Basin (China)[J]. International Journal of Coal Geology, 171:1 − 11.
[37] 张福,黄艺,蓝宝锋,等,2021. 正安地区五峰组−龙马溪组页岩储层特征及控制因素[J]. 地质科技通报,40(1):49 − 56. Zhang F,Huang Y,Lan B F,et al.,2021. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology,40(1):49 − 56 (in Chinese with English abstract).
[38] 赵安坤,余谦,周业鑫,等,2021. 盆缘构造复杂区页岩气保存条件分析与量化评价——以黔北地区海相页岩为例[J]. 沉积与特提斯地质,41(3):376 − 386. Zhao A K,Yu Q,Zhou Y X,et al.,2021. Analysis and quantitative evaluation of the shale gas preservation conditions in the margin areas of Sichuan Basin[J]. Sedimentary Geology and Tethyan Geology,41(3):376 − 386 (in Chinese with English abstract).
[39] 赵少泽,李勇,程乐利,等,2022. 上扬子地区五峰组—龙马溪组黑色页岩高频层序划分[J]. 天然气地球科学,33(11):1808 − 1818. Zhao S Z,Li Y,Cheng L L,et al.,2022. Division of high-frequency sequences in black shales of the Wufeng-Longmaxi formations,Upper Yangtze Region[J]. Natural Gas Geoscience,33(11):1808 − 1818 (in Chinese with English abstract).
[40] 邹才能,董大忠,王玉满,等,2015. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发,42(6):689 − 701. DOI: 10.11698/PED.2015.06.01 Zou C N,Dong D Z,Wang Y M,et al.,2015. Shale gas in China:Characteristics,challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development,42(6):689 − 701 (in Chinese with English abstract). DOI: 10.11698/PED.2015.06.01
[41] Zou C N,Qiu Z,Poulton S W,et al.,2018. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction[J]. Geology, 46(6):535 − 538.
[42] 邹才能,赵群,王红岩,等,2022. 中国海相页岩气主要特征及勘探开发主体理论与技术[J]. 天然气工业,42(8):1 − 13. DOI: 10.3787/j.issn.1000-0976.2022.08.001 Zou C N,Zhao Q,Wang H Y,et al.,2022. The main characteristics of marine shale gas and the theory & technology of exploration and development in China[J]. Natural Gas Industry,42(8):1 − 13 (in Chinese with English abstract). DOI: 10.3787/j.issn.1000-0976.2022.08.001
[43] Zumberge J,Ferworn K,Brown S,2012. Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations[J]. Marine and Petroleum Geology,31(1):43 − 52. DOI: 10.1016/j.marpetgeo.2011.06.009