• 中文核心期刊
  • 中国科技核心期刊
  • CSCD收录期刊
  • 美国《化学文摘》收录期刊
  • Scopus数据库收录期刊
高级检索

班−怒成矿带西段切隆铜金矿点成矿物质来源:来自矿石硫化物原位S同位素的证据

何云龙, 王立强, 洛桑塔青, 李保亮, 高腾

何云龙,王立强,洛桑塔青,等,2024. 班−怒成矿带西段切隆铜金矿点成矿物质来源:来自矿石硫化物原位S同位素的证据[J]. 沉积与特提斯地质,44(4):683−696. DOI: 10.19826/j.cnki.1009-3850.2024.09004
引用本文: 何云龙,王立强,洛桑塔青,等,2024. 班−怒成矿带西段切隆铜金矿点成矿物质来源:来自矿石硫化物原位S同位素的证据[J]. 沉积与特提斯地质,44(4):683−696. DOI: 10.19826/j.cnki.1009-3850.2024.09004
HE Y L,WANG L Q,LUOSANG T Q,et al.,2024. Metallogenic material source of the Qielong copper-gold mineralization occurrence in the western Bangong-Nujiang metallogenic belt: Constraints from in-situ sulfur isotopes of ore sulfides[J]. Sedimentary Geology and Tethyan Geology,44(4):683−696. DOI: 10.19826/j.cnki.1009-3850.2024.09004
Citation: HE Y L,WANG L Q,LUOSANG T Q,et al.,2024. Metallogenic material source of the Qielong copper-gold mineralization occurrence in the western Bangong-Nujiang metallogenic belt: Constraints from in-situ sulfur isotopes of ore sulfides[J]. Sedimentary Geology and Tethyan Geology,44(4):683−696. DOI: 10.19826/j.cnki.1009-3850.2024.09004

班−怒成矿带西段切隆铜金矿点成矿物质来源:来自矿石硫化物原位S同位素的证据

基金项目: 中国地质科学院基本业务费专项项目(JKYZD202317);中国地质调查局地质调查项目(DD20243483,DD20230360)
详细信息
    作者简介:

    何云龙(1999—),博士研究生,地质学专业。E-mail:hyl991206@163.com

    通讯作者:

    王立强(1984—),研究员,主要从事矿床学与区域成矿规律研究。E-mail:wlq060301@163.com

  • 中图分类号: P611;P597.2

Metallogenic material source of the Qielong copper-gold mineralization occurrence in the western Bangong-Nujiang metallogenic belt: Constraints from in-situ sulfur isotopes of ore sulfides

  • 摘要:

    切隆铜金矿点位于班公湖–怒江成矿带西段曲隆地区,矿体主要赋存于晚白垩世二长花岗岩与下拉组大理岩接触带,主要呈脉状、透镜状产出,矿区蚀变以夕卡岩化为主。该矿区稳定同位素研究尚属空白,一定程度上制约了对矿区成矿物质来源及矿床成因的认识。本文对矿石中的斑铜矿、蓝辉铜矿和黄铜矿进行了原位S同位素测试,探讨了切隆铜金矿点的成矿物质来源。结果显示:斑铜矿的δ34SV-CDT值为-0.29‰~2.15‰,均值为1.22‰;蓝辉铜矿的δ34SV-CDT值为-0.52‰~-0.47‰,均值为-0.50‰;黄铜矿的δ34SV-CDT值为0.22‰~1.67‰,均值为1.11‰,指示S同位素组成具有岩浆硫的特征。通过切隆铜金矿点与尕尔穷、嘎拉勒矿床的对比,本文认为切隆铜金矿点与尕尔穷、嘎拉勒矿床具有相似的围岩岩性条件,但其成矿物质源区存在一定的差异。切隆铜金矿点的成矿物质来源于深部岩浆,地层对成矿贡献不大,而尕尔穷、嘎拉勒矿床的成矿物质来源则具有深部岩浆和地层的混源特征。在该区域的后续找矿勘查工作中,要重点关注晚白垩世早期(90 Ma~80 Ma)中–酸性侵入岩发育地区以及侵入岩与地层中碳酸盐岩的接触部位是否存在夕卡岩型矿化。此外,还应重点查明切隆矿区隐伏岩体的侵位情况,以期探获斑岩型矿体。

    Abstract:

    The Qielong copper-gold mineralization occurrence is located in the Qulong area of the western Bangong-Nujiang metallogenic belt. The ore bodies mainly occur in and near the contact zone between the Late Cretaceous monzogranite and marble of the Xiala Formation. The ore bodies occur mainly as vein and lens in shape. The alteration of the host rock is characterized mainly by skarn. Research on the stable isotopes of this mineralization area is lacking, which to some extent hinders further research on the sources of ore-forming materials and the genesis of the Qielong Cu-Au mineralization. This article conducted in-situ S isotope analysis on ore sulfides such as the bornites, digenites, and chalcopyrites, and explored the source of ore-forming materials in the Qielong Cu-Au mineralization occurrence. The results show that the δ34SV-CDT values of bornites range from -0.29‰ to 2.15‰, with an average of 1.22‰; the δ34SV-CDT values of digenites range from -0.52‰ to -0.47‰, with an average of -0.50‰; the δ34SV-CDT values of chalcopyrites range from 0.22‰ to 1.67‰, with an average of 1.11‰, indicating the S isotope compositions have the characteristics of magmatic sulfur. Based on comparative studies on S isotopes between Qielong and the coeval Gaerqiong and Galale deposits, this article suggests that the conditions of surrounding rock lithology of the Qielong copper-gold mineralization occurrence are similar to those of the Gaerqiong and Galale deposits. However, there are certain differences in their ore-forming source regions. The ore-forming material of the Qielong Cu-Au mineralization area originates from deep magma, with little strata contributions to the ore-forming process; whereas, the ore-forming materials of the Gaerqiong and Galale deposits have mixed sources of deep magma and strata. In subsequent prospecting and exploration work in this area, attention should be focused on whether there is skarn-type mineralization in areas where intermediate-acidic intrusive rocks developed in the early Late Cretaceous (90 Ma~80 Ma) and at the contact parts between the intrusive rocks and carbonate rocks in the strata. Furthermore, the emplacement situation of the concealed rock mass in the Qielong copper-gold mineralization occurrence should also be investigated with emphasis, in the hope of discovering and exploring porphyry-type ore bodies.

  • 图  1   青藏高原大地构造格架(a)和班公湖–怒江成矿带西段矿床分布图(b,据Gao et al.,2022修改)

    图中的年龄数据来自黄瀚霄等,2013Li et al.,20112016a2016bLi et al.,2017Li et al.,2018林彬等,2017Lin et al.,2017唐菊兴等,2016王立强等,2017Wang et al.,20182019李志军等,2011张志等,2017韦少港等,2017郑海涛等,2018Gao et al.,2022,以及本项目组未发表数据

    Figure  1.   Sketch tectonic map of the Qingzang (Tibet) Plateau (a) and the distribution of ore deposits in western Bangong-Nujiang metallogenic belt (b,modified after Gao et al.,2022)

    图  2   曲隆地区区域地质图

    Figure  2.   Regional geological map of Qulong region

    图  3   切隆矿区地质简图(a)和PM04实测剖面图(b)

    Figure  3.   Simplified geological map of the Qielong copper-gold mineralization occurrence (a) and PM04 measured profile map (b)

    图  4   切隆铜金矿点矿化蚀变特征

    a. 裂隙较为发育的石榴子石;b. 呈放射状集合体形式产出的阳起石;c. 绿帘石−绿泥石脉体切穿石榴子石;d-f. 矿化沿二长花岗岩与下拉组大理岩接触带呈不规则透镜状产出;g. 黄铜矿被后期的磁铁矿交代成他形不规则状;h. 蓝辉铜矿沿黄铜矿边缘进行交代形成蓝辉铜矿环边;i. 斑铜矿呈他形结晶结构分布在石榴子石颗粒之间;j. 斑铜矿被蓝辉铜矿交代呈交代残余结构;k-l. 铜蓝沿蓝辉铜矿边缘进行交代形成铜蓝环边;m. 镜铁矿呈稠密浸染状分布于石榴子石夕卡岩带中;n. 斑铜矿呈稀疏浸染状分布于石榴子石夕卡岩带中;o-p. 黄铜矿、黄铁矿、辉铜矿、黝铜矿和孔雀石等呈团斑状分布于石榴子石颗粒之间。Grt—石榴子石;Act—阳起石;Chl—绿泥石;Epi—绿帘石;Cp—黄铜矿;Mt—磁铁矿;Dg—蓝辉铜矿;Bn—斑铜矿;Cv—铜蓝

    Figure  4.   Microscopic characteristics of mineralization and alteration in the Qielong copper-gold mineralization occurrence

    图  5   切隆铜金矿点金属硫化物用于原位硫同位素测试的样品镜下特征及点位分布图

    Bn—斑铜矿;Dg—蓝辉铜矿;Cp—黄铜矿;红圈处代表激光剥蚀位置

    Figure  5.   Microscopic characteristics and distribution map of metal sulfides in the Qielong copper-gold mineralization occurrence for in-situ sulfur isotope testing

    图  6   切隆铜金矿点金属硫化物S同位素频率分布直方图

    Figure  6.   Histograms of S isotope frequency distribution of sulfides in ores from the Qielong copper-gold mineralization occurrence

    图  7   切隆铜金矿点与尕尔穷–嘎拉勒矿集区S同位素组成分布对比图

    Figure  7.   Comparison of S isotope composition distributions between the Qielong copper-gold mineralization occurrence and the Gaerqiong-Galale ore concentration area

    表  1   切隆铜金矿点金属硫化物S同位素分析结果

    Table  1   Results of S isotope analysis of metal sulfides in the Qielong copper-gold mineralization occurrence

    样品编号 矿物类型 δ34SV-CDT/‰ 样品编号 矿物类型 δ34SV-CDT/‰
    QL-T21-1 斑铜矿 2.15 QL-T4-1 蓝辉铜矿 -0.47
    QL-T21-2 2.13 QL-T4-2 -0.52
    QL-T41-1 1.54 QL-T4-3 -0.52
    QL-T41-2 1.58 QL-T41-3-1 黄铜矿 1.38
    QL-T41-3-2 1.92 QL-T41-5 1.35
    QL-T11-1 0.56 QL-T41-6-1 1.61
    QL-T11-3 0.47 QL-T41-6-2 1.67
    QL-T11-2 0.47 QL-T2-1-1 0.46
    QL-T2-2 -0.29 QL-T2-1-2 0.22
    QL-T41-4 1.68
    下载: 导出CSV

    表  2   切隆铜金矿点与尕尔穷–嘎拉勒矿集区地质特征对比

    Table  2   Comparison of geological characteristics between the Qielong copper-gold mineralization occurrence and the Gaerqiong-Galale ore cluster area

    矿床名称 切隆 尕尔穷 嘎拉勒
    矿化类型 夕卡岩型 夕卡岩型 夕卡岩型
    赋矿地层 下拉组(P2x)大理岩夹薄层
    泥灰岩
    多爱组(K1d)大理岩、灰岩 捷嘎组(K1j)白云岩、
    白云质大理岩
    成矿岩体 二长花岗岩 石英闪长岩 花岗闪长岩
    围岩蚀变 夕卡岩化、大理岩化 夕卡岩化、大理岩化、
    角岩化、硅化
    夕卡岩化、硅化、大理岩化
    矿石矿物 黄铜矿、斑铜矿、辉铜矿、
    蓝辉铜矿、孔雀石、铜蓝、
    自然金
    黄铜矿、斑铜矿、自然金 自然金、黄铜矿
    脉石矿物 石榴子石、阳起石、硅灰石、
    绿帘石、绿泥石、石英
    石榴子石、透辉石、硅灰石、
    石英、绿帘石
    镁橄榄石、透辉石、金云母、
    蛇纹石、透闪石、石榴子石、
    尖晶石、石英
    元素组合 Cu-Au Cu-Au Cu-Au
    成矿时代 90 Ma 87 Ma 89 Ma
    资料来源 项目组待发表数据 李志军等,2011 张志等,2017
    下载: 导出CSV
  • [1] 白云,张志,陈毓川,等,2015. 尕尔穷—嘎拉勒铜金矿集区S、Pb同位素地球化学特征[J]. 金属矿山,(9):100 − 104. DOI: 10.3969/j.issn.1001-1250.2015.09.023

    Bai Y,Zhang Z,Chen Y C,et al.,2015. S,Pb isotope geochemical characteristics of the Gaerqiong-Galale gold-copper ore-concentrated area[J]. Metal Mine,(9):100 − 104 (in Chinese with English abstract). DOI: 10.3969/j.issn.1001-1250.2015.09.023

    [2] 车旭,刘一鸣,范建军,等,2021. 西藏洞错晚白垩世花岗闪长斑岩:岩石圈拆沉的产物[J]. 地质通报,40(8):1357 − 1368.

    Che X,Liu Y M,Fan J J,et al.,2021. Late Cretaceous Dongco granodiorite porphyry,Tibet:Product of lithospheric delamination[J]. Geological Bulletin of China,40(8):1357 − 1368 (in Chinese with English abstract).

    [3]

    Chen W,Zhang S,Ding J,et al.,2017. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane,central Tibet[J]. Gondwana Research,41:373 − 389. DOI: 10.1016/j.gr.2015.07.004

    [4]

    Dai Z W,Huang H X,Li G M,et al.,2020. Formation of Late Cretaceous high-Mg granitoid porphyry in central Lhasa,Tibet:Implications for crustal thickening prior to India-Asia collision[J]. Geological Journal,55(10):6696 − 6717. DOI: 10.1002/gj.3834

    [5]

    Fu J L,Hu Z C,Li J W,et al.,2017. Accurate determination of sulfur isotopes (δ33S and δ34S) in sulfides and elemental sulfur by femtosecond laser ablation MC-ICP-MS with non-matrix matched calibration[J]. Journal of Analytical Atomic Spectrometry,32(12):2341 − 2351. DOI: 10.1039/C7JA00282C

    [6] 高轲,宋扬,刘治博,等,2023. 西藏拿若铜(金)矿床硫、铅同位素组成及成矿物质来源[J]. 沉积与特提斯地质,43(1):145 − 155. DOI: 10.3969/j.issn.1009-3850.2023.01.011

    Gao K,Song Y,Liu Z B,et al.,2023. Sulfur and lead isotope composition and tracing for sources of ore-forming materials in the Naruo Cu (Au) deposit, in Tibet[J]. Sedimentary Geology and Tethyan Geology,43(1):145 − 155 (in Chinese with English abstract). DOI: 10.3969/j.issn.1009-3850.2023.01.011

    [7]

    Gao T,Tang J X,Wang L Q,et al.,2022. The first intra-oceanic island-arc porphyry Cu (Au) deposit in the western Bangong-Nujiang suture zone:Evidence from the Saidengnan Cu (Au) deposit[J]. Gondwana Research,104:92 − 111. DOI: 10.1016/j.gr.2021.06.008

    [8] 高腾,王立强,王勇,等,2019. 班—怒成矿带西段江玛南铜银矿区石英闪长玢岩锆石U-Pb年龄、Hf同位素及地球化学特征[J]. 地球学报,40(6):884 − 894. DOI: 10.3975/cagsb.2019.042201

    Gao T,Wang L Q,Wang Y,et al.,2019. Zircon U-Pb age,Hf isotope and geochemistry of quartz diorite porphyry of the Jiangmanan copper-silver ore district in the western part of the Bangong Co-Nujiang metallogenic belt[J]. Acta Geoscientica Sinica,40(6):884 − 894 (in Chinese with English abstract). DOI: 10.3975/cagsb.2019.042201

    [9] 黄瀚霄,李光明,陈华安,等,2013. 西藏色布塔铜钼矿床中辉钼矿Re-Os定年及其成矿意义[J]. 地质学报,87(2):240 − 244. DOI: 10.3969/j.issn.0001-5717.2013.02.008

    Huang H X,Li G M,Chen H A,et al.,2013. Molybdenite Re-Os isotope age and metallogenic significance of Sebuta copper molybdenum deposit in Tibet[J]. Acta Geologica Sinica,87(2):240 − 244 (in Chinese with English abstract). DOI: 10.3969/j.issn.0001-5717.2013.02.008

    [10] 江思宏,聂凤军,刘翼飞,等,2010. 内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究[J]. 矿床地质,29(1):101 − 112. DOI: 10.3969/j.issn.0258-7106.2010.01.010

    Jiang S H,Nie F J,Liu Y F,et al.,2010. Sulfur and lead isotopic compositions of Bairendaba and Weilasituo silver-polymetallic deposits,Inner Mongolia[J]. Mineral Deposits,29(1):101 − 112 (in Chinese with English abstract). DOI: 10.3969/j.issn.0258-7106.2010.01.010

    [11]

    Kapp P,DeCelles P G,Gehrels G E,et al.,2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin,119(7-8):917 − 933. DOI: 10.1130/B26033.1

    [12] 李发桥,唐菊兴,王立强,等,2024. 西藏拿若斑岩型铜(金)矿床黄铁矿、黄铜矿原位硫同位素特征及其地质意义[J]. 沉积与特提斯地质,44(4):697 − 709.

    Li F Q,Tang J X,Wang L Q,et al.,2024. In-situ sulfur isotope characteristics of pyrite in the Naruo porphyry Cu (Au) deposit,Xizang:Implications for geological significance[J]. Sedimentary Geology and Tethyan Geology,44(4):697 − 709 (in Chinese with English abstract).

    [13]

    Li G M,Qin K Z,Li J X,et al.,2017. Cretaceous magmatism and metallogeny in the Bangong-Nujiang metallogenic belt,central Tibet:evidence from petrogeochemistry,zircon U-Pb ages,and Hf-O isotopic compositions[J]. Gondwana Research,41:110 − 127. DOI: 10.1016/j.gr.2015.09.006

    [14]

    Li J X,Li G M,Qin K Z,et al.,2011. High-temperature magmatic fluid exsolved from magma at the Duobuza porphyry copper-gold deposit,Northern Tibet[J]. Geofluids,11(2):134 − 143. DOI: 10.1111/j.1468-8123.2011.00325.x

    [15]

    Li J X,Qin K Z,Li G M,et al.,2016a. The Nadun Cu-Au mineralization,central Tibet:Root of a high sulfidation epithermal deposit[J]. Ore Geology Reviews,78:371 − 387. DOI: 10.1016/j.oregeorev.2016.04.019

    [16]

    Li J X,Qin K Z,Li G M,et al.,2016b. Petrogenesis of Cretaceous igneous rocks from the Duolong porphyry Cu-Au deposit,central Tibet:evidence from zircon U-Pb geochronology,petrochemistry and Sr-Nd-Pb-Hf isotope characteristics[J]. Geological Journal,51(2):285 − 307. DOI: 10.1002/gj.2631

    [17]

    Li X K,Chen J,Wang R C,et al.,2018. Temporal and spatial variations of Late Mesozoic granitoids in the SW Qiangtang,Tibet:Implications for crustal architecture,Meso-Tethyan evolution and regional mineralization[J]. Earth-science reviews,185:374 − 396. DOI: 10.1016/j.earscirev.2018.04.005

    [18] 李志军,唐菊兴,姚晓峰,等,2011. 班公湖−怒江成矿带西段尕尔穷铜金矿床辉钼矿Re-Os年龄及其地质意义[J]. 成都理工大学学报:自然科学版,38(6):678 − 683. DOI: 10.3969/j.issn.1671-9727.2011.06.013

    Li Z J,Tang J X,Yao X F,et al.,2011. Re-Os isotope age and geological significance of molybdenite in the Gaerqiong Cu-Au deposit of Geji,Tibet,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),38(6):678 − 683 (in Chinese with English abstract). DOI: 10.3969/j.issn.1671-9727.2011.06.013

    [19] 梁清玲,江思宏,白大明,等,2015. 福建紫金山矿田浅成低温热液型矿床成矿物质来源探讨——H、O、S、Pb同位素地球化学证据[J]. 矿床地质,34(3):533 − 546.

    Liang Q L,Jiang S H,Bai D M,et al.,2015. Sources of ore-forming materials of epithermal deposits in Zijinshan orefield in Fujian Province:Evidence from H,O,S and Pb isotopes[J]. Mineral Deposits,34(3):533 − 546 (in Chinese with English abstract).

    [20]

    Lin B,Tang J X,Chen Y C,et al.,2017. Geochronology and genesis of the Tiegelongnan porphyry Cu (Au) deposit in Tibet:evidence from U-Pb,Re-Os dating and Hf,S,and H-O isotopes[J]. Resource Geology,67(1):1 − 21. DOI: 10.1111/rge.12113

    [21] 林彬,陈毓川,唐菊兴,等,2017. 藏北东窝东铜多金属矿床含矿斑岩年代学、Sr-Nd-Pb同位素及成矿预测[J]. 地质学报, 91(9):1942 − 1958.

    Lin B,Chen Y C,Tang J X,et al.,2017. Geochronology and Sr-Nd-Pb isotopic geochemistry of ore-bearing porphyry in the Dongwodong copper polymetallic deposit,north Tibet and their implications for exploration direction[J]. Acta Geologica Sinica, 91(9):1942 − 1958 (in Chinese with English abstract).

    [22]

    Liu W,Wang B,Yang X,et al.,2018. Geochronology,geochemistry,and Sr-Nd-Hf isotopes of the Balazha ore-bearing porphyries:Implications for petrogenesis and geodynamic setting of late Cretaceous magmatic rocks in the northern Lhasa block,Tibet[J]. Acta Geologica Sinica (English Edition),92(5):1739 − 1752. DOI: 10.1111/1755-6724.13674

    [23]

    Liu Y,Wang M,Li C,et al.,2019. Late Cretaceous tectono-magmatic activity in the Nize region,central Tibet:Evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone[J]. International Geology Review,61(5):562 − 583. DOI: 10.1080/00206814.2018.1437789

    [24] 毛敬涛,2016. 西藏嘎拉勒铜金矿床地质特征与成矿机制研究[D]. 北京:中国地质大学(北京).

    Mao J T,2016. Geological features and mineralization of skarn Cu-Au deposit in Galale,Tebit[D]. Beijing:China University of Geosciences (Beijing) (in Chinese with English abstract).

    [25]

    Murphy M A,Yin A,Harrison T M,et al.,1997. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology,25(8):719 − 722. DOI: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2

    [26]

    Ohmoto H,1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology,67(5):551 − 578. DOI: 10.2113/gsecongeo.67.5.551

    [27]

    Ohmoto H,1986. Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry,16(1):491 − 559.

    [28] 彭勃,李宝龙,刘海永,等,2019. 西藏班公湖−怒江成矿带主碰撞期成矿作用:荣嘎钼矿岩石地球化学及同位素年龄的证据[J]. 岩石学报,35(3):705 − 723. DOI: 10.18654/1000-0569/2019.03.06

    Peng B,Li B L,Liu H Y,et al.,2019. Main collisional mineralization of Bangong-Nujiang metallogenic belt,Tibet:Geochronological,geochemical and isotopic evidence from Rongga molybdenum deposit[J]. Acta Petrologica Sinica,35(3):705 − 723 (in Chinese with English abstract). DOI: 10.18654/1000-0569/2019.03.06

    [29]

    Pribil M J,Ridley W I,Emsbo P,2015. Sulfate and sulfide sulfur isotopes(δ34S and δ33S)measured by solution and laser ablation MC-ICP-MS:An enhanced approach using external correction[J]. Chemical Geology,412:99 − 106. DOI: 10.1016/j.chemgeo.2015.07.014

    [30]

    Rye R O,Ohmoto H,1974. Sulfur and carbon isotopes and ore genesis:A review[J]. Economic Geology,69(6):826 − 842. DOI: 10.2113/gsecongeo.69.6.826

    [31] 史仲明,李宝龙,彭勃,等,2023. 西藏拉萨地块盐湖复式岩基中花岗斑岩的成因及其对班−怒洋闭合时限的制约[J]. 地质通报,42(5):788 − 801.

    Shi Z M,Li B L,Peng B,et al.,2023. The petrogenesis of the granite porphyry of Yanhu composite batholith in the Lhasa terrane,Tibet and its constraints on the time limit of Bangonghu-Nujiang Ocean closure[J]. Geological Bulletin of China,42(5):788 − 801 (in Chinese with English abstract).

    [32] 宋俊龙,唐菊兴,张志,等,2015. 西藏尕尔穷−嘎拉勒铜金矿集区流体包裹体特征及成矿作用研究[J]. 矿床地质,34(5):999 − 1015.

    Song J L,Tang J X,Zhang Z,et al.,2015. Characteristics of fluid inclusions and metallogenic process of Gaerqiong-Galale Cu-Au ore concentration area,Tibet[J]. Mineral Deposits,34(5):999 − 1015 (in Chinese with English abstract).

    [33] 宋扬,唐菊兴,曲晓明,等,2014. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展,29(7):795 − 809.

    Song Y,Tang J X,Qu X M,et al.,2014. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition[J]. Advances in Earth Science,29(7):795 − 809 (in Chinese with English abstract).

    [34]

    Sui Q L,Wang Q,Zhu D C,et al.,2013. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane,Tibet:Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos,168:144 − 159.

    [35] 孙嘉,毛景文,林彬,等,2019. 西藏多龙矿集区典型矿床(点)矿化特征与成矿作用对比研究[J]. 矿床地质,38(5):1159 − 1184.

    Sun J,Mao J W,Lin B,et al.,2019. Comparison of ore geology and ore-forming processes of ore deposits(ore spots) in Duolong area,Tibet[J]. Mineral Deposits,38(5):1159 − 1184 (in Chinese with English abstract).

    [36] 唐菊兴,张志,李志军,等,2013. 西藏尕尔穷—嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向[J]. 地球学报,34(4):385 − 394.

    Tang J X,Zhang Z,Li Z J,et al.,2013. The metallogensis,deposit model and prospecting direction of the Ga’erqiong-Galale copper-gold ore field,Tibet[J]. Acta Geoscientica Sinica,34(4):385 − 394 (in Chinese with English abstract).

    [37] 唐菊兴,宋扬,王勤,等,2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩−浅成低温热液型矿床[J]. 地球学报,37(6):663 − 690. DOI: 10.3975/cagsb.2016.06.03

    Tang J X,Song Y,Wang Q,et al.,2016. Geological characteristics and exploration model of the Tiegelongnan Cu (Au-Ag) deposit:The first ten million tons metal resources of a porphyry-epithermal deposit in Tibet[J]. Acta Geoscientica Sinica,37(6):663 − 690 (in Chinese with English abstract). DOI: 10.3975/cagsb.2016.06.03

    [38]

    Volkmer J E,Kapp P,Guynn J H,et al.,2007. Cretaceous-Tertiary structural evolution of the north central Lhasa terrane,Tibet[J]. Tectonics,26(6):1 − 18.

    [39] 王保弟,许继峰,刘保民,等,2013. 拉萨地块北部~90Ma斑岩型矿床年代学及成矿地质背景[J]. 地质学报,87(1):71 − 80.

    Wang B D,Xu J F,Liu B M,et al.,2013. Geochronology and ore-forming geological background of ~90 Ma porphyry copper deposit in the Lhasa Terrane,Tibet Plateau[J]. Acta Geologica Sinica,87(1):71 − 80 (in Chinese with English abstract).

    [40]

    Wang L Q,Wang Y,Fan Y,et al.,2018. A Miocene tungsten mineralization and its implications in the western Bangong-Nujiang metallogenic belt:Constraints from U-Pb,Ar-Ar,and Re-Os geochronology of the Jiaoxi tungsten deposit,Tibet,China[J]. Ore Geology Reviews,97:74 − 87. DOI: 10.1016/j.oregeorev.2018.05.006

    [41]

    Wang L Q,Wang Y,Danzhen W X,et al.,2019. Early Cretaceous diorites in the Kenbale Cu mineralization occurrence,Tibet,China,and its geological significance[J]. Geosciences Journal,23:219 − 233. DOI: 10.1007/s12303-018-0029-9

    [42] 王立强,王勇,旦真王修,等,2017. 班公湖—怒江成矿带西段主要岩浆热液型矿床成矿特征初探[J]. 地球学报,38(5):615 − 626. DOI: 10.3975/cagsb.2017.05.03

    Wang L Q,Wang Y,Danzhen W X,et al.,2017. A tentative discussion on metallogeny of the main magmatic-hydrothermal ore deposits in the western BangongCo-Nujiang metallogenic belt,Tibet[J]. Acta Geoscientica Sinica,38(5):615 − 626 (in Chinese with English abstract). DOI: 10.3975/cagsb.2017.05.03

    [43] 王欣欣,闫国强,刘洪,等,2021. 中拉萨地块晚白垩世曲桑格勒花岗岩的成因:地球化学、锆石U-Pb年代学及Sr-Nd-Pb-Hf同位素的约束[J]. 地球科学,46(8):2832 − 2849.

    Wang X X,Yan G Q,Liu H,et al.,2021. Genesis of late Cretaceous Qusang’ gele granitie in central Lhasa Block,Tibet:Constraints by geochemistry,zircon U-Pb geochronology,and Sr-Nd-Pb-Hf isotopes[J]. Earth Science,46(8):2832 − 2849 (in Chinese with English abstract).

    [44]

    Wang Y,Tang J X,Wang L Q,et al.,2019. Magmatism and metallogenic mechanism of the Ga’erqiong and Galale Cu-Au deposits in the west central Lhasa subterrane,Tibet:Constraints from geochronology,geochemistry,and Sr-Nd-Pb-Hf isotopes[J]. Ore Geology Reviews,105:616 − 635. DOI: 10.1016/j.oregeorev.2019.01.015

    [45] 王勇,2020. 西藏班公湖−怒江成矿带西段角西钨矿床成矿作用及找矿预测[D]. 北京:中国地质大学(北京).

    Wang Y,2020. Metallogenesis and prospecting of the Jiaoxi tungsten deposit in the western part of the Bangong-Nujiang metallogenic belt,Tibet[D]. Beijing:China University of Geosciences (Beijing) (in Chinese with English abstract).

    [46] 韦少港,唐菊兴,宋扬,等,2017. 西藏班公湖−怒江缝合带美日切错组中酸性火山岩锆石U-Pb年龄、Sr-Nd-Hf同位素、岩石成因及其构造意义[J]. 地质学报,91(1):132 − 150.

    Wei S G,Tang J X,Song Y,et al.,2017. Petrogenesis,zircon U-Pb geochronology and Sr-Nd-Hf isotopes of the intermediate-felsic volcanic rocks from the Duolong deposit in the Bangonghu-Nujiang suture zone,Tibet,and its tectonic significance[J]. Acta Geologica Sinica,91(1):132 − 150 (in Chinese with English abstract).

    [47] 伍登浩,高顺宝,郑有业,等,2018. 西藏班公湖——怒江成矿带南侧矽卡岩型铜多金属矿床S、Pb同位素组成及成矿物质来源[J]. 吉林大学学报:地球科学版,48(1):70 − 86.

    Wu D H,Gao S B,Zheng Y Y,et al.,2018. Sulfur and lead isotopic composition and their ore-forming material source of skarn copper polymetallic deposits in southern Tibet Bangonghu-Nujiang metallogenic belt[J]. Journal of Jilin University(Earth Science Edition),48(1):70 − 86 (in Chinese with English abstract).

    [48] 姚晓峰,唐菊兴,李志军,等,2012. 西藏尕尔穷铜金矿床S、Pb同位素地球化学特征——成矿物质来源示踪[J]. 地球学报,33(4):528 − 536.

    Yao X F,Tang J X,Li Z J,et al.,2012. S,Pb isotope characteristics of the Ga’erqiong gold-copper deposit in Tibet:Tracing the source of ore-forming materials[J]. Acta Geoscientica Sinica,33(4):528 − 536 (in Chinese with English abstract).

    [49]

    Yi J K,Wang Q,Zhu D C,et al.,2018. Westward-younging high-Mg adakitic magmatism in central Tibet:Record of a westward-migrating lithospheric foundering beneath the Lhasa-Qiangtang collision zone during the Late Cretaceous[J]. Lithos,316:92 − 103.

    [50]

    Yin A,Harrison T M,2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual review of earth and planetary sciences,28(1):211 − 280. DOI: 10.1146/annurev.earth.28.1.211

    [51] 于云鹏,王明,解超明,等,2020. 西藏拉萨地块北部晚白垩世晚期基性岩墙的成因:来自锆石U-Pb年代学及地球化学的制约[J]. 岩石学报,36(2):443 − 454. DOI: 10.18654/1000-0569/2020.02.07

    Yu Y P,Wang M,Xie C M,et al.,2020. Zircon U-Pb geochronology and geochemisty:Constraints on petrogenesis of the lately Late Cretaceous mafic dykes in northern Lhasa terrane,Tibet[J]. Acta Petrologica Sinica,36(2):443 − 454 (in Chinese with English abstract). DOI: 10.18654/1000-0569/2020.02.07

    [52] 张海,陆生林,郭伟康,等,2023. 西藏班公湖−怒江成矿带早白垩世吉龙花岗闪长斑岩成因:锆石年代学、Hf同位素及岩石地球化学约束[J/OL]. 沉积与特提斯地质:1 − 17.

    Zhang H,Lu S L,Guo W K,et al.,2023. Petrogenesis of early Cretaceous the Jilong granodiorite porphyry in the Bangong Co-Nujiang metallogenic belt,Tibet,China:Constraints from zircon U-Pb geochronology,Hf isotopes and whole-rock geochemistry[J/OL]. Sedimentary Geology and Tethyan Geology:1 − 17 (in Chinese with English abstract).

    [53]

    Zhang W,Hu Z C,Liu Y S,2020. Iso-Compass:New freeware software for isotopic data reduction of LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,35(6):1087 − 1096. DOI: 10.1039/D0JA00084A

    [54]

    Zhang Z,Li Z J,Li G M,et al.,2020. Geology,fluid inclusions,40Ar/39Ar geochronology and H-O-S-Pb isotopes of the Galale Cu-Au deposit,Northwestern Tibet,China[J]. Journal of Geochemical Exploration,214:106547. DOI: 10.1016/j.gexplo.2020.106547

    [55] 张志,宋俊龙,唐菊兴,等,2017. 西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年[J]. 地球科学,42(6):862 − 880.

    Zhang Z,Song J L,Tang J X,et al.,2017. Petrogenesis,diagenesis and mineralization ages of Galale Cu-Au deposit,Tibet:Zircon U-Pb age,Hf isotopic composition and molybdenite Re-Os dating[J]. Earth Science,42(6):862 − 880 (in Chinese with English abstract).

    [56] 郑海涛,郑有业,徐净,等,2018. 西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因[J]. 地球科学,43(8):2858 − 2874.

    Zheng H T,Zheng Y Y,Xu J,et al.,2018. Zircon U-Pb ages and petrogenesis of ore-bearing porphyry for Qingcaoshan porphyry Cu-Au deposit,Tibet[J]. Earth Science,43(8):2858 − 2874 (in Chinese with English abstract).

    [57] 郑永飞,徐宝龙,周根陶,2000. 矿物稳定同位素地球化学研究[J]. 地学前缘,7(2):299 − 320.

    Zheng Y F,Xu B L,Zhou G T,2000. Geochemical studies of stable isotopes in minerals[J]. Earth Science Frontiers,7(2):299 − 320 (in Chinese with English abstract).

    [58]

    Zhu D C,Li S M,Cawood P A,et al.,2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos,245:7 − 17.

    [59]

    Zhu D C,Zhao Z D,Niu Y,et al.,2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research,23(4):1429 − 1454. DOI: 10.1016/j.gr.2012.02.002

图(7)  /  表(2)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  16
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-07-25
  • 录用日期:  2024-07-31
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回