Tectonic attribute of the Shiquanhe-Namco ophiolitic belt: Insights from geochemical characteristics of siliceous rocks in the Asa mélange zone, central Tibet
-
摘要:
班公湖–怒江缝合带和狮泉河–纳木错蛇绿岩带中与蛇绿岩伴生的中生代硅质岩出露广泛,对于探讨中特提斯洋中生代大洋演化和狮泉河–纳木错蛇绿岩带构造属性都具有重要意义。本文对狮泉河–纳木错蛇绿混杂岩带中段阿索蛇绿混杂岩内的硅质岩岩块的野外地质特征、岩石学特征及全岩主、微量元素地球化学特征开展了详细研究,讨论了硅质岩的岩石成因及沉积环境。阿索蛇绿混杂岩中,硅质岩有紫红色硅质岩和黑色硅质岩两种类型,以岩块形式出露于混杂岩带中。紫红色硅质岩SiO2含量低于纯硅质岩,相对较为富Al,稀土元素北美页岩标准化后表现出微弱的Ce负异常,属于正常沉积成因的硅质岩,成岩过程中有陆源物质加入。黑色硅质岩富集Fe、Mn,北美页岩标准化后表现出强烈的Ce负异常,属于热液成因,其成岩过程中有基性火山碎屑物质加入。两类硅质岩均沉积在靠近大陆边缘的洋盆环境中。班公湖–怒江缝合带和狮泉河–纳木错蛇绿岩中的硅质岩地球化学数据分析显示,狮泉河–纳木错蛇绿岩带中,硅质岩主要沉积于靠近大陆边缘的有限洋盆环境中,而班公湖–怒江缝合带中的硅质岩既有大陆边缘环境下产出的硅质岩,也包含了远洋盆地环境中的硅质岩。因此,两者之间硅质岩沉积环境的差异可能暗示了狮泉河–纳木错蛇绿混杂岩带并非班公湖–怒江缝合带的构造推覆体,而是一条代表了有限洋盆遗迹的原位蛇绿混杂岩带。
Abstract:Mesozoic siliceous outcrops with ophiolite were found in Shiquanhe-Namco Ophiolitic Mélange Zone (SNMZ) and Bangong-Nujiang suture zone (BNSZ), which can reveal the sedimentary environment Bangong-Nujiang Ocean and relationship between BNSZ and SNMZ. In this paper, research on the siliceous rocks from the Asa area, located in the central segment of SNMZ, is reported, including field work, petrology, as well as major- and trace-element analysis. Moreover, the genesis and sedimentary environments of these siliceous rocks have also been analyzed. The Asa siliceous rocks consist of two types: red siliceous and black siliceous, which are exposed as rock blocks in the mélange belt. The SiO2 content in red siliceous rocks is lower than that of pure siliceous rocks, while the red siliceous rocks are relatively enriched in Al. The rare earth element patterns of the red siliceous rocks are similar with flat model with a weak negative Ce anomaly after North American Shale standardization (NASS). The red siliceous rocks belong to the siliceous rocks of normal sedimentary genesis. So, the red siliceous rocks were formed in a continental margin basin environment with the addition of terrigenous materials in the source area. The black siliceous rocks are enriched in Fe and Mn, with a strong negative Ce anomaly after North American Shale standardization (NASS). The black siliceous rocks are of hydrothermal origin, influenced by basic pyroclastic materials and formed by hydrothermal activity near the continental margin. The geochemical characteristics of the siliceous rocks indicate that siliceous rocks in Asa ophiolitic mélange were formed in a limited oceanic basin environment close to the continental margin, which is consistent with siliceous rocks from other ophiolites in SNMZ. Unlike SNMZ, BNSZ not only contains siliceous rocks formed in the continental margin environment but also preserves siliceous rocks deposited in the pelagic environment. Therefore, the difference in the siliceous depositional environments between BNSZ and SNMZ suggests that SNMZ does not represent a tectonic nappe of BNSZ but is an in-situ ophiolitic mélange belt originated from a limited oceanic basin.
-
Keywords:
- siliceous /
- geochemical characteristics /
- sedimentary environment /
- Meso-Tethys
-
1 *数据资料请联系编辑部或登录期刊网站https://cjyttsdz.ijournals.cn获取。2 *数据资料请联系编辑部或登录期刊网站https://cjyttsdz.ijournals.cn获取。 -
图 3 阿索硅质岩北美页岩标准化(a)和球粒陨石标准化(b)稀土配分模式图(球粒陨石标准化数据据Sun and McDonough,1989,北美页岩标准化数据据Boynton,1984)
Figure 3. North American Shale rare earth element (a) and chondrite-normalized rare earth element (b) diagrams for cherts in Asa aera (chondrite-normalized data after Sun and McDonough,1989;North American Shale data after Boynton,1984)
图 4 阿索蛇绿混杂岩中硅质岩岩石成因判别图解
a. 硅质岩Al–Fe–Mn成因判别图解(据Adachi et al.,1986;Yamamoto,1987);b. 硅质岩Fe/Ti–Al/(Al+Fe)成因判别图解(据Adachi et al.,1986;Yamamoto,1987);c. 硅质岩Al2O3/TiO2–Al/(Al+Fe+Mn)成因判别图解(黄虎等,2012);d. 硅质岩 SiO2/Al2O3–Al2O3图(硅质岩组分演化曲线据黄虎等,2013)。A—基性火山热液成因硅质岩;B—含酸性火山碎屑非热液成因硅质岩;C—正常海相非热液成因硅质岩;D—含基性火山碎屑非热液成因硅质岩
Figure 4. Petrogenesis diagrams of cherts in Asa aera
图 5 阿索蛇绿混杂岩中硅质岩沉积环境判别图解
a. 硅质岩(La/Ce)N–Al2O3/(Al2O3+Fe2O3)沉积环境判别图解(据Murray et al.,1994)b. 硅质岩 Fe2O3/TiO2–Al2O3/(Al2O3+Fe2O3)沉积环境判别图解(据Murray et al.,1992);
Figure 5. The environment discrimination diagrams for cherts in Asa area
图 6 狮泉河–纳木错蛇绿混杂岩带和班公湖–怒江缝合带硅质岩沉积环境判别图解
a. 硅质岩Fe2O3/(100-SiO2)–Al2O3/(100-SiO2)沉积环境判别图解(据Murray et al.,1992);b. 硅质岩(La/Ce)N–(La/Lu)N沉积环境判别图解(据Murray et al.,1994)。数据来源:果芒错硅质岩据徐梦婧等(2014),拉果错硅质岩据徐梦婧等(2020),狮泉河硅质岩据王艳凯等(2021),仁错硅质岩据任强(2019),阿索混杂岩硅质岩数据据本文,班公湖–怒江缝合带硅质岩据冯彩霞(2011)和Fan et al.(2017)
Figure 6. The environment discrimination diagrams for the cherts of BNSZ and SNMZ
-
[1] Adachi M,Yamamoto K,Suigiski R,1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific:Their geological significance a indication of ocean ridge activity[J]. Sedimentary Geology,47:125 − 148. DOI: 10.1016/0037-0738(86)90075-8
[2] Armstrong H A,Owen A W,Floyd J D,1999. Rare earth geochemistry of Arenig cherts from the Ballantrae ophiolite and Leadhills Imbricate Zone,southern Scotland:Implications for origin and significance to the Caledonian Orogeny[J]. Journal of the Geological Society,156(3):549 − 560. DOI: 10.1144/gsjgs.156.3.0549
[3] Baxter A T,Aitchison J C,Zyabrev S V,2009. Radiolarian age constraints on Mesotethyan ocean evolution,and their implications for development of the Bangong-Nujiang suture,Tibet[J]. Journal of the Geological Society,166(4):689 − 694. DOI: 10.1144/0016-76492008-128
[4] Bostr M K,Joensuu O,S Valdés,et al.,1972. Geochemical history of South Atlantic Ocean sediments since Late Cretaceous[J]. Marine Geology, 12(2):85 − 121.
[5] Boynton W V,1984. Cosmochemistry of the rare earth element:Meteorite studies[M]// Rare Earth Element Geochemistry. Amsterdam: Elsevier:63−114.
[6] Bruce M C,Percival I G,2014. Geochemical evidence for provenance of Ordovician cherts in southeastern Australia[J]. Australian Journal of Earth Sciences, 61(7):927 − 950.
[7] 曹圣华,罗小川,唐峰林,等,2004. 班公湖−怒江结合带南侧弧−盆系时空结构与演化特征[J]. 中国地质,31(1):51 − 56. Cao S H,Luo X C,Tang F L,et al.,2004. Time-space structure and evolution of the arc-basin system on the southern side of the Bangong Co-Nujiang junction zone[J]. Geology in China,31(1):51 − 56 (in Chinese with English abstract).
[8] 曹圣华,廖六根,邓世权,等,2005. 西藏班公湖蛇绿岩组合层序、地球化学及其成因研究[J]. 沉积与特提斯地质,25(3):101 − 110. Cao S H,Liao L G,Deng S Q,et al.,2005. Sequences,geochemistry and genesis of the Bangong-Lake ophiolites in Xizang[J]. Sedimentary Geology and Tethyan Geology,25(3):101 − 110 (in Chinese with English abstract).
[9] 曹圣华,肖晓林,欧阳克贵,2008. 班公湖−怒江结合带西段侏罗纪木嘎岗日群的重新厘定及意义[J]. 沉积学报,26(4):559 − 564. Cao S H,Xiao X L,Ouyang K G,2008. Renew-establishment of the Jurassic Mugagangri groups and its geological significance on the western side of the Bangonghu-Nujiang suture zone[J]. Acta Sedimentologica Sinica,26(4):559 − 564 (in Chinese with English abstract).
[10] 陈奇,谢琳,肖志坚,2007. 青藏高原西部班公湖蛇绿混杂岩带的基本特征与构造演化[J]. 东华理工学院学报,30(2):107 − 112. Chen Q,Xie L,Xiao Z J,2007. Characteristics and tectonic evolution of Bangong Lake ophiolitic mélange belt in the western Qinghai-Tibet Plateau[J]. Journal of East China Institute of Technology,30(2):107 − 112 (in Chinese with English abstract).
[11] 陈玉禄,张宽忠,杨志民,等,2006. 青藏高原班公湖—怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面[J]. 地质通报,25(6):694 − 699. Chen Y L,Zhang K Z,Yang Z M,et al.,2006. Discovery of a complete ophiolite section in the Jueweng area,Nagqu County,in the central segment of the Bangong Co-Nujiang junction zone[J]. Geological Bulletin of China,25(6):694 − 699 (in Chinese with English abstract).
[12] Dilek Y,F H,2014. Ophiolites and Their Origins[J]. Elements,10(2):93 − 100. DOI: 10.2113/gselements.10.2.93
[13] 丁林,钟大赉,1995. 滇西昌宁−孟连带古特提斯洋硅质岩稀土元素和铈异常特征[J]. 中国科学B辑:化学,25:93 − 100. Ding L,Zhong D L,1995. Characteristic of rare earth elements and Ce anomaly of chert from palaeo-Tethys in Changning Menglian belt, western Yunnan [J]. Science in China (Ser. B),25(1):93 − 100 (in Chinese).
[14] 杜远生,1995. 秦岭造山带泥盆纪古海洋研究[J]. 地球科学,20(6):617 − 623. DOI: 10.3321/j.issn:1000-2383.1995.06.006 Du Y S,1995. Devonian Paleo-ocean of Qinling orogenic belt[J]. Earth Science,20(6):617 − 623 (in Chinese with English abstract). DOI: 10.3321/j.issn:1000-2383.1995.06.006
[15] 杜远生,朱杰,顾松竹,等,2007. 北祁连造山带寒武系−奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示[J]. 中国科学(D辑:地球科学), 37(10):1314 − 1329. Du Y S,Zhu J,Gu S Z,et al.,2007. Sedimentary geochemistry of the Cambrian-Ordovician cherts:Implication on archipelagic ocean of north Qilian orogenic belt[J]. Science in China Series D:Earth Sciences, 37(10):1314 − 1329 (in Chinese with English abstract).
[16] 冯彩霞,刘家军,2001. 硅质岩的研究现状及其成矿意义[J]. 世界地质,20(2):119 − 123. Feng C,Liu J J,2001. The inventive actuality and mineralization significance of cherts[J]. World Geology,20(2):119 − 123 (in Chinese with English abstract).
[17] 冯彩霞,2011. 班公湖−怒江缝合带西段改则硅质岩地球化学特征及沉积环境[J]. 矿床地质,30(5):773 − 786. Feng C,2011. Geochemical characteristics and sedimentary environment of siliceous rocks of Gerze area in western Bangong Co-Nujiang suture zone,Tibet[J]. Mineral Deposits,30(5):773 − 786 (in Chinese with English abstract).
[18] Fan J J,Li C,Xie C M,et al.,2015. The evolution of the Bangong-Nujiang Neo-Tethys Ocean:Evidence from zircon U-Pb and Lu-Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites[J]. Tectonophysics,655:27 − 40. DOI: 10.1016/j.tecto.2015.04.019
[19] Fan J J,Li C,Wang M,et al.,2017. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau[J]. International Journal of Earth Sciences,107(1):231 − 249.
[20] 冯晔,廖六根,徐平,2006. 西藏班公湖蛇绿岩地质特征及形成时代[J]. 资源调查与环境,26(3):185 − 192. Feng Y,Liao L G,Xu P,2006. The geological characteristics and the forming time of ophiolites in the region of the Bangong Lake,Tibet[J]. Resource Survey and Environment,26(3):185 − 192 (in Chinese with English abstract).
[21] 冯益民,张越,2018. 大洋板块地层(OPS)简介及评述[J]. 地质通报, 37(4):523 − 531. Feng Y M,Zhang Y,2018. Introduction and commentary on ocean plate stratigrapgy[J]. Geological Bulletin of China, 37(4):523 − 531 (in Chinese with English abstract).
[22] Hara H,Kurihara T,Kuroda J,et al.,2010. Geological and geochemical aspects of a Devonian siliceous succession in northern Thailand:Implications for the opening of the Paleo-Tethys[J]. Palaeogeography Palaeoclimatology Palaeoecology,297(2):452 − 464. DOI: 10.1016/j.palaeo.2010.08.029
[23] 黄虎,杜远生,杨江海,等,2012. 水城−紫云−南丹裂陷盆地晚古生代硅质沉积物地球化学特征及其地质意义[J]. 地质学报,86(12):1994 − 2010. DOI: 10.3969/j.issn.0001-5717.2012.12.010 Huang H,Du Y S,Yang J H,et al.,2012. Geochemical features of siliceous sediments of the Shuicheng-Ziyun-Nandan Rift Basin in the Late Paleozoic and their tectonic implication[J]. Acta Geologica Sinica,86(12):1994 − 2010 (in Chinese with English abstract). DOI: 10.3969/j.issn.0001-5717.2012.12.010
[24] 黄虎,杜远生,黄志强,等,2013. 桂西晚古生代硅质岩地球化学特征及其对右江盆地构造演化的启示等[J]. 中国科学:地球科学,43:304 − 316. Huang H,Du Y S,Huang Z Q,et al.,2013. Depositional chemistry of chert during late Paleozoic from western Guangxi and its implication for the tectonic evolution of the Youjiang Basin[J]. Science China:Earth Sciences,56:479 − 493 (in Chinese with English abstract).
[25] Isozaki Y,Maruyama S,Fukuoka F,1990. Accreted oceanic materials in Japan[J]. Tectonophysics, 181:179 − 205.
[26] Kato Y,Nakao K,Isozaki Y,2002. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan:Implications for an oceanic redox change[J]. Chemical Geology,182(1):15 − 34. DOI: 10.1016/S0009-2541(01)00273-X
[27] 黎彤,1987. 地壳元素丰度的若干统计特征[J]. 地质与勘探, 28(10):1 − 7. Li T,1987. The statistical characteristics of the abundance of chemical elements in the earth's crust[J]. Geology and Prospecting, 28(10):1 − 7 (in Chinese with English abstract).
[28] 刘庆宏,肖志坚,曹圣华,等,2004. 班公湖−怒江结合带西段多岛弧盆系时空结构初步分析[J]. 沉积与特提斯地质,24(3):15 − 21. Liu Q H,Xiao Z J,Cao S H,et al.,2004. A preliminary study of the spatio-temporal framework of the archipelagic arc-basin systems in the western part of the Bangong-(Nujiang) suture zone,Xizang[J]. Sedimentary Geology and Tethyan Geology,24(3):15 − 21 (in Chinese with English abstract).
[29] Liu Y M,Wang M,Li C,et al.,2018. Late Cretaceous tectono-magmatic activity in the Nize region,central Tibet:Evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone[J]. International Geology Review:1 − 22.
[30] Liu T,Zhai Q G,Wang J,et al.,2016. Tectonic significance of the Dongqiao ophiolite in the north-central Tibetan Plateau:Evidence from zircon dating,petrological,geochemical and Sr-Nd-Hf isotopic characterization[J]. Journal of Asian Earth Sciences, 116:139 − 154.
[31] 刘中戎,张佳伟,2017. 西藏羌塘盆地中生代晚期构造事件与油气的关系[J]. 沉积与特提斯地质,37(2):23 − 29. Liu Z R,Zhang J W,2017. Late Mesozoic tectonic events and hydrocarbon accumulation in the Qiangtang Basin,northern Xizang[J]. Sedimentary Geology and Tethyan Geology,37(2):23 − 29 (in Chinese with English abstract).
[32] Ma A L,Hu X M,Kapp P,et al.,2020. Mesozoic subduction accretion History in central Tibet:constrained from provenance analysis of the Mugagangri subduction complex in the Bangong‐Nujiang suture zone[J]. Tectonics, 39:006144.
[33] 马安林,胡修棉,2021. 沉积记录约束班公湖−怒江缝合带东巧蛇绿岩的仰冲过程[J]. 沉积与特提斯地质,41(2):163 − 175. Ma A L,Hu X M,2021. Constraining the obduction process of the Dongqiao ophiolite in the Bangongco-Nujiang suture zone by the sedimentary record[J]. Sedimentary Geology and Tethyan Geology,41(2):163 − 175 (in Chinese with English abstract).
[34] Murray R W,Ten Brink M R B,Jones D L,et al.,1990. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology,18(3):268 − 271. DOI: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2
[35] Murray R W,Buchholtz T,Brink M R,et al.,1991. Rare earth,major,and trace elements in chert from the Franciscan Complex and Monterey Group,California:Assessing REE sources to fine-grained marine sediments[J]. Geochimica et Cosmochimica Acta,55(7):1875 − 1895. DOI: 10.1016/0016-7037(91)90030-9
[36] Murray R W,Ten Brink M R B,Gerlach D C,et al.,1992. Rare earth,major,and trace element composition of Monterey and DSDP chert and associated host sediment:Assessing the influence of chemical fractionation during diagenesis[J]. Geochimica et Cosmochimica Acta,56(7):2657 − 2671. DOI: 10.1016/0016-7037(92)90351-I
[37] Murray R W,1994. Chemical criteria to identify the depositional environment of chert:General principles and applications[J]. Sedimentary Geology,90(3-4):213 − 232. DOI: 10.1016/0037-0738(94)90039-6
[38] 潘桂棠,王立全,耿全如,等,2020. 班公湖−双湖−怒江−昌宁−孟连对接带时空结构——特提斯大洋地质及演化问题[J]. 沉积与特提斯地质,40(3):1 − 19. Pan G T,Wang L Q,Geng Q R,et al.,2020. Bangonghu-Shuanghu-Nujiang-Changning-Menglian Mega-suture zone:A discussion on geology and evolution of the Tethys Ocean[J]. Sedimentary Geology and Tethyan Geology,40(3):1 − 19(in Chinese with English abstract).
[39] 任强,2019. 西藏永珠蛇绿构造混杂岩与成矿[D]. 长春:吉林大学. Ren Q,2018. The ophiolitic tectonic melange and mineralization in the Yongzhu area,Tibet[D]. Changchun:Jilin University (in Chinese with English abstract).
[40] 孙东立,徐均涛,王玉净,等,1991. 西藏日土地区二叠纪、侏罗纪、白垩纪地层及古生物[M]. 南京:南京大学出版社:1 − 210. Sun D L,Xu J T,Wang Y J,et al.,1991. Stratigraphy and Paleontology of Triassic,Jurassic and Cretaceous in the Ritu Area,(Xizang)[M]. Nanjing:Nanjing University Press:1 − 210 (in Chinese).
[41] Sun S S,McDonough W F,1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society Special Publications,42:313 − 345. DOI: 10.1144/GSL.SP.1989.042.01.19
[42] 唐峰林,黄建村,罗小川,等,2004. 藏北阿索构造混杂岩的发现及其地质意义[J]. 东华理工大学学报:自然科学版,27(3):245 − 250. Tang F L,Huang J C,Luo X C,et al.,2004. The discovery and significance of the Asuo structural mélanges in north Tibet[J]. Journal of East China Institute of Technology,27(3):245 − 250 (in Chinese with English abstract).
[43] Wang M,Li C,Wu Y W,et al.,2013. Geochronology,geochemistry,Hf isotopic compositions and formation mechanism of radial mafic dikes in northern Tibet[J]. International Geology Review, 56(2):187 − 205.
[44] 王艳凯,刘二情,毕志伟,等,2021. 西藏狮泉河地区与蛇绿岩伴生的硅质岩地球化学特征及形成环境分析[J]. 河北地质大学学报,44(5):16 − 22. Wang Y K,Liu E Q,Bi Z W,et al.,2021. Geochemical characteristics and formational environments of siliceous rocks associated with ophiolitic in Shiquanhe area,Tibet[J]. Journal of Hebei GEO University,44(5):16 − 22 (in Chinese with English abstract).
[45] 王玉净,王建平,刘彦明,等,2002. 西藏丁青蛇绿岩特征、时代及其地质意义[J]. 微体古生物学报,19(4):417 − 420. Wang Y J,Wang J P,Liu Y M,et al.,2002. Characteristics and age of the Dingqing ophiolite in Xizang (Tibet) and their geological significance[J]. Acta Micropaleontologica Sinica,19 (4):417 − 420 (in Chinese with English abstract).
[46] Wu Z,Barosh P J,Ye P,2015. Late Cretaceous tectonic framework of the Tibetan Plateau[J]. Journal of Asian Earth Sciences,114:693 − 703.
[47] 徐梦婧,李才,吴彦旺,等,2014. 西藏果芒错蛇绿混杂岩中硅质岩的地球化学特征及其形成环境[J]. 地质通报, 33(7):1061 − 1066. Xu M J,Li C,Wu Y W,et al.,2014. Geochemical characteristics and sedimentary environments of siliceous rocks in Guomang-co ophiolitic mélange of Tibet[J]. Geological Bulletin of China, 33(7):1061 − 1066 (in Chinese with English abstract).
[48] Xu M J,Li C,Zhang X,et al.,2014. Nature and evolution of the Neo-Tethys in central Tibet:Synthesis of ophiolitic petrology,geochemistry,and geochronology[J]. International Geology Review,56(9):1072 − 1096. DOI: 10.1080/00206814.2014.919616
[49] 徐梦婧,赵佩云,兰锐,等,2020. 狮泉河−永珠−嘉黎构造带中西段硅质岩地球化学特征及其沉积环境[J]. 地学前缘, 27(3):182 − 190. Xu M J,Zhao P Y,Lan R,et al.,2020. Geochemical characteristics and sedimentary environments of siliceous in the middle and western parts of the Shiquanhe-Yongzhu-Jiali tectonic belt[J]. Earth Science Frontiers, 27(3):182 − 190 (in Chinese with English abstract).
[50] Xu W,Wang M,Li C,et al.,Early Cretaceous ridge subduction along the southern margin of the Qiangtang terrane:New evidence from the Yanqiang Ling fragmented ophiolite,central Tibet[J]. The Journal of Geology,126:639 − 654.
[51] Yamamoto K,1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes[J]. Sedimentary Geology,52(1):65 − 108.
[52] 闫臻,李继亮,雍拥,等,2008. 北祁连石灰沟奥陶纪碳酸盐岩—硅质岩形成的构造环境[J]. 岩石学报,24(10):2384 − 2394. Yan Z,Li J L,Yong Y,et al.,2008. Tectonic environment of Ordovician carbonate-cherts in the Shihuigou area,North Qilian orogeny[J]. Acta Petrologica Sinica,24(10):2384 − 2394 (in Chinese with English abstract).
[53] 曾孝文,王明,范建军,等,2018. 青藏高原中部阿索蛇绿岩岩石学与同位素年龄[J]. 地质通报, 37(8):1492 − 1502. Zeng X W,Wang M,Fan J J,et al.,2018. Petrology and geochronology of Asuo ophiolite in central Tibetan Plateau[J]. Geological Bulletin of China, 37(8):1492 − 1502 (in Chinese with English abstract).
[54] Zeng X W,Wang M,Fan J J,et al.,2018b. Geochemistry and geochronology of gabbros from the Asa Ophiolite,Tibet:Implications for the early Cretaceous evolution of the Meso-Tethys Ocean[J]. Lithos,320−321:192 − 206.
[55] Zeng X W,Wang M,Li C,et al.,2021. Lower Cretaceous turbidites in the Shiquanhe-Namco Ophiolite Mélange Zone,Asa area,Tibet:Constraints on the evolution of the Meso-Tethys Ocean[J]. Geoscience Frontiers,12:101127.
[56] Zeng Y C,Xu J F,Chen J L,et al.,2018a. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt,Lhasa Terrane,Tibetan Plateau[J]. Lithos,300−301:250 − 260.
[57] Zhai Q G,Jahn B M,Wang J,et al.,2016. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau[J]. Geological Society of America Bulletin,128(3−4):355 − 373. DOI: 10.1130/B31296.1
[58] 张聪,黄虎,侯明才,2017. 地球化学方法在硅质岩成因与构造背景研究中的进展及问题[J]. 成都理工大学学报:自然科学版,44(3):293 − 304. Zhang C,Huang H,Hou M C,2017. Problems in the geochemical study on chest genesis for interpretation of tectonic background[J]. Journal of Chengdu University of Technology,44(3):293 − 304 (in Chinese with English abstract).
[59] 张进,邓晋福,肖庆辉,等,2012. 蛇绿岩研究的最新进展[J]. 地质通报,31(1):1 − 12. Zhang J,Deng J F,Xiao Q H,et al.,2012. New advances in the study of ophiolites[J]. Geological Bulletin of China,31(1):1 − 12 (in Chinese with English abstract).
[60] Zhang K J,Xia B,Zhang Y X,et al.,2014. Central Tibetan Meso-Tethyan oceanic plateau[J]. Lithos,210-211:278 − 288. DOI: 10.1016/j.lithos.2014.09.004
[61] Zhang W,Liu C,Liu T,et al.,2020. Subduction initiation triggered by accretion of a Jurassic oceanic plateau along the Bangong–Nujiang Suture in central Tibet[J]. Terra Nova,33:150 − 158.
[62] 郑有业,许荣科,马国桃,等,2006. 锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲时间的约束[J]. 岩石学报,22(4):895 − 904. DOI: 10.3321/j.issn:1000-0569.2006.04.013 Zheng Y Y,Xu R K,Ma G T,et al.,2006. Ages of generation and subduction of Shiquanhe river ophiolite:Restriction from SHRIMP zircon dating[J]. Acta petrologica Sinica,22(4):895 − 904(in Chinese with Englishi abstract) (in Chinese with English abstract). DOI: 10.3321/j.issn:1000-0569.2006.04.013
[63] Zhu D,Li S,Cawood P A,et al.,2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos,245:7 − 17.
-
其他相关附件
-
DOCX格式
曾孝文-沉积与特提斯地质-2024-附表 点击下载(40KB)
-