• 中文核心期刊
  • 中国科技核心期刊
  • CSCD收录期刊
  • 美国《化学文摘》收录期刊
  • Scopus数据库收录期刊
高级检索

滇西北普朗铜矿首采区北段辉钼矿Re-Os同位素定年及其地质意义

孔垂爱, 舒华伟, 沙有财, 陈明勇, 董桥峰, 唐思宇, 冷开杰, 李莹

孔垂爱,舒华伟,沙有财,等,2025. 滇西北普朗铜矿首采区北段辉钼矿Re-Os同位素定年及其地质意义[J]. 沉积与特提斯地质,45(1):200−211. DOI: 10.19826/j.cnki.1009-3850.2024.12006
引用本文: 孔垂爱,舒华伟,沙有财,等,2025. 滇西北普朗铜矿首采区北段辉钼矿Re-Os同位素定年及其地质意义[J]. 沉积与特提斯地质,45(1):200−211. DOI: 10.19826/j.cnki.1009-3850.2024.12006
KONG C A,SHU H W,SHA Y C,et al.,2025. Re-Os geochronology and implications of molybdenite from the north section of the first mining area of the Pulang copper deposit, NW Yunnan[J]. Sedimentary Geology and Tethyan Geology,45(1):200−211. DOI: 10.19826/j.cnki.1009-3850.2024.12006
Citation: KONG C A,SHU H W,SHA Y C,et al.,2025. Re-Os geochronology and implications of molybdenite from the north section of the first mining area of the Pulang copper deposit, NW Yunnan[J]. Sedimentary Geology and Tethyan Geology,45(1):200−211. DOI: 10.19826/j.cnki.1009-3850.2024.12006

滇西北普朗铜矿首采区北段辉钼矿Re-Os同位素定年及其地质意义

基金项目: 云南迪庆有色金属有限责任公司重点科技创新项目(DQYS202206)
详细信息
    作者简介:

    孔垂爱(1984—),男,工程师,主要从事矿产资源勘查开发工作。E-mail:330173380@qq.com

    通讯作者:

    舒华伟(1987—),男,高级工程师,主要从事矿产资源勘查开发工作。E-mail:630613601@qq.com

  • 中图分类号: P624

Re-Os geochronology and implications of molybdenite from the north section of the first mining area of the Pulang copper deposit, NW Yunnan

  • 摘要:

    普朗铜矿是三江特提斯造山带格咱矿集区内最大的印支期斑岩型Cu-Mo多金属矿床。该矿床首采区北段是矿山的重要资源储备区,其成矿特征与首采区相比具有较大差异。首采区北段与首采区是否为同一岩浆活动的产物尚不清楚,这就限制了其与首采区矿化关系的深入探讨以及对成矿规律的总体认识。本次研究对首采区20线以北的矿石辉钼矿进行了Re-Os同位素年代学研究,以期为北部区域成矿规律及资源前景的进一步探索和评价提供基础地质资料,从而指导下步补充勘探工作。结果表明,辉钼矿Re-Os同位素加权平均模式年龄为(202.35±0.84)Ma,等时线年龄为(200.7±9.2)Ma,略晚于首采区矿体的形成时代。普朗南部Ⅰ号复式岩体中成矿事件经历了较长的时间(约20 Myr),或许与成矿流体多次幕式活动有关,表明普朗首采区北段具有较大的资源潜力。普朗铜矿矿石样品中辉钼矿Re含量为1.50×10-4~4.45×10-4,平均为2.64×10-4,暗示成矿物质主要来源于地幔。成矿背景为甘孜–理塘洋向西平坦俯冲于义敦岛弧带南段格咱地区导致大洋板块部分熔融,并诱发大量的埃达克质岩浆的上涌而成矿。

    Abstract:

    The Pulang Cu deposit, located in the Gezan ore-concentrated area of the Sanjiang Tethyan belt, is the largest porphyry Cu-Mo polymetallic deposit formed during the Indosinian orogeny. The north section of the first mining area is a key resource area of the deposit, but its metallogenic characteristics are quite different from those of the first mining area. It remains unclear whether the first mining area and its northern section are products of the same genetic magmatic activity, limiting the in-depth exploration of its relationship with the mineralization of the first mining area and the general understanding of the metallogenic law. In this study, we present new Re-Os geochronology of molybdenite from this section, aiming to provide basic geological data for further exploration and evaluation of metallogenic regularity and resource prospects in the northern region, and to guide further exploration efforts. The molybdenite Re-Os data yield a weighted mean model age of (202.35±0.84)Ma and an isochron age of (200.7±9.2)Ma, slightly younger than the orebody in the first mining area. The mineralization in the No. Ⅰ composite intrusion in the south zone of Pulang spanned a long period (ca. 20 Myr), possibly related to multiple pulses of ore fluids, suggesting a high potential for undiscovered resources in the north section of the first mining area. The Re content of molybdenite ranges from 1.50×10-4 to 4.45×10-4, with an average of 2.64×10-4, indicating a mantle-derived ore-forming materials. The tectonic setting for mineralization was the flat subduction of the Ganzi-Litang ocean beneath the Yidun arc in the southern Gezan area, which triggered partial melting of the oceanic crust and generated voluminous adakitic magmas and associated ore fluids.

  • 斑岩铜系统提供了世界上约75%的铜(Cu)、50%的钼(Mo)、20%的金(Au)和大部分的铼(Re)(Sillitoe,2010)。普朗斑岩型铜多金属矿床(以下简称普朗铜矿)位于中国西南三江特提斯造山带南部义敦岛弧南部的格咱矿集区内,是该地区规模最大的印支期斑岩型铜多金属矿床(Li et al.,2022; Cai et al.,2023)(图1a-b)。普朗铜矿目前已探明Cu储量约430万吨(平均品位为0.52%),伴生Au 145吨(平均品位0.18 g/t),伴生Mo 8.48万吨(平均品位0.01%),此外还伴生有Ag、S、Re、Pt、Pd等多种有益元素(曾普胜等,2006; 张少颖等,2020)。普朗铜矿经过20余年的勘查研究,对首采区KT1主矿体已进行系统控制,主矿体已基本定型,走向已经封边。但是受矿山投资及开采规划所限,主矿体控制程度不够完善,目前达到探明类别的资源储量仅局限于7—20线3720 m标高以上(首采区)(图2)。首采区北段(20—44线),作为矿山的重要资源储备区,研究控制程度相对较低(图2)。2019年,云南迪庆有色金属有限责任公司对KT1矿体20—30线范围开展补充勘探工作时,发现该范围内矿体空间分布、规模、形态、产状及蚀变矿化等特征与首采区相比均有所不同,初步推测其控矿因素、成矿规律等发生了变化(董桥峰等,2021沈啟武等,2022)。首采区北段与首采区是否为同一岩浆活动的产物尚不清楚,限制了其与首采区矿化关系的深入探讨以及对成矿规律的总体认识。本次研究对KT1矿体20线以北矿石辉钼矿进行了Re-Os同位素年代学研究,以期为北部区域成矿规律及资源前景的进一步探索和评价提供基础地质资料,指导下步勘探工作和生产规划。

    图  1  区域大地构造位置(a)、义敦岛弧构造地质简图(b)及格咱地区地质简图(c,张少颖等,2020
    Figure  1.  Tectonic outline of the study area (a), tectonic framework of the Yidun arc (b) and geologic sketch map of the Gezan area (c, after Zhang et al., 2020)
    图  2  普朗铜矿南矿段地质图
    Figure  2.  Geological map of the southern ore block of Pulang copper deposit

    普朗铜矿所在的格咱弧位于义敦岛弧南部,其西以金沙江缝合带为界与羌塘地体相隔,东以甘孜–理塘缝合带为界与松潘–甘孜地体相接(图1a-b)(张少颖等,2020; Cao et al.,2022)。格咱弧地区主要出露三叠系地层和印支期火山岩,主要为曲噶寺组(T3q)和图姆沟组(T3t)的砂板岩,夹火山岩、碳酸盐岩(图1c)(Leng et al.,2014; Cai et al.,2023)。曲噶寺组由深灰色板岩、细粒石英砂岩、灰岩和镁铁质火山岩组成,底部发育一套砾岩;图姆沟组整合地覆盖于曲噶寺组之上,厚约5000 m,由灰色板岩、砂岩、中酸性火山岩和凝灰岩以及少量镁铁质火山岩夹层组成(Wang et al.,2013)。

    由于中生代甘孜–理塘洋和金沙江洋大洋板片西向俯冲,之后义敦岛弧、羌塘地体和扬子克拉通的弧–陆碰撞,该地区以发育NNW—SSE或SN走向的区域断层构造为主(侯增谦等,2004)。格咱地区也广泛出露晚三叠世(231~209 Ma)侵入岩,其与斑岩铜矿密切相关,包括普朗超大型斑岩铜矿、雪鸡坪大型斑岩铜矿和春都、烂泥塘等中小型斑岩铜矿(Li et al.,2011; Leng et al.,2012; Cai et al.,2023)。这些斑岩铜矿组成了格咱斑岩铜矿带,是三江特提斯成矿域的重要组成部分,也是我国晚三叠世最重要的斑岩型矿集区之一(图1c; Li et al.,2011; 邓军等,2016)。

    普朗铜矿由南部、东部和北部三个矿体组成,其中南部矿体占矿区内资源量的96%左右(Cao et al.,2019; 张少颖等,2020)。普朗浅成复式斑岩由石英闪长玢岩、石英二长斑岩和花岗闪长斑岩三期钙碱性岩体组成,受控于NW—SE向的黑水塘断裂和EW向的全干力达隐伏断裂,侵入图姆沟组地层中(范玉华和李文昌,2006; 庞振山等,2009; Cao et al.,2022)。

    普朗铜矿以往的研究工作主要集中在南部的首采区(7—20线),本次研究范围为首采区北部(20—44线)(图2)。首采区北部矿体出露标高42274293 m,平均倾角61°,顶、底板岩石主要为石英二长斑岩,其次为石英闪长玢岩,局部有少量角岩(图3)。20—22线矿体主要呈透镜状产出,少量呈脉状,铜品位高,工业矿规模较大;24—44线矿体多呈脉状产出,铜品位低,工业矿规模变小,以脉状低品位矿为主。矿石工业类型以石英二长斑岩型铜矿石为主,其次为石英闪长玢岩型铜矿石,局部见小规模角岩型铜矿石。普朗KT1主矿体研究区与首采区的控矿因素特征对比详见表1,二者具有一定的差异。矿体在首采区以大透镜状为主,倾角较陡(平均67°),研究区以脉状为主,以低品位矿体为主(集中在0.2%~0.3%)。

    图  3  普朗铜矿22线(左)、28线(右)地质剖面图
    Figure  3.  Geological sections of Line-22 (left) and Line-28 (right) of Pulang copper deposit
    表  1  普朗KT1主矿体研究区与首采区控矿因素特征对比
    Table  1.  Comparison of ore-controlling factors between the research area and the first mining area of Pulang KT1 main ore body
    位置 首采区(7—20线) 研究区(20—44线)
    控矿岩
    性特征
    成矿岩性 石英二长斑岩,花岗闪长斑岩,少量粗粒石英闪长玢岩 石英二长斑岩为主,少量粗粒石英闪长玢岩
    赋矿位置 岩体内、局部角岩 岩体内,局部角岩
    控矿蚀
    变分带
    特征
    蚀变分带 从内到外依次为:钾硅化带→(黄铁)绢英
    岩化带→青磐岩化带(泥化叠加于后两种蚀变之上)
    从内到外依次为:钾硅化带(规模小)→
    (黄铁)绢英岩化带(部分叠加在钾硅化带
    上)→青磐岩化带(泥化叠加于它们之上)
    蚀变分带特征矿物 钾硅化带:石英+钾长石+黑云母+钠长石;
    (黄铁)绢英岩化带:绢云母+石英;
    青磐岩化带:绿泥石+绿帘石+方解石;
    泥化带:伊利石+高岭土等黏土矿物
    钾硅化带:石英+钾长石±黑云母或石英(脉)+钾长石或石英(脉)+黑(金)云母;
    (黄铁)绢英岩化带:绢云母+石英(脉);
    青磐岩化带:绿泥石+绿帘石+方解石;
    泥化:高岭土+蒙脱石±绿脱石±地开石等
    蚀变分带金属特征矿物 钾硅化带:黄铜矿+辉钼矿+黄铁矿(少);
    (黄铁)绢英岩化带:黄铜矿+黄铁矿+辉钼矿+磁黄铁矿;
    青磐岩化带:黄铁矿+磁黄铁矿+黄铜矿;
    钾硅化带:黄铜矿+黄铁矿±辉钼矿(少);
    绢英岩化带:黄铜矿+黄铁矿+辉钼矿+磁黄
    铁矿;
    青磐岩化带:黄铁矿±磁黄铁矿±黄铜矿
    与矿体有关的蚀变 钾硅化带、绢英岩带 绢英岩化带为主,少量钾硅化带
    构造控
    矿特征
    区域黑水塘断裂与全干力达断裂、次级构造破碎带、节理裂隙及微裂隙系统 区域黑水塘断裂与全干力达断裂、次级构造破碎带、节理裂隙及微裂隙系统
    下载: 导出CSV 
    | 显示表格

    首采区北部矿石自然类型有氧化矿、混合矿和硫化矿,以硫化矿为主,氧化矿和混合矿仅局部地段零星分布。硫化矿石的金属矿物有黄铜矿、斑铜矿、黄铁矿、磁黄铁矿、磁铁矿、方铅矿、闪锌矿等(图4图5);以细脉浸染状构造(图4a)为主要,其次为浸染状构造(图4b)和脉状构造(图4c),局部可见角砾状构造和斑杂状构造(图4d);主要结构为结晶结构(图5a-h)和交代结构(图5i),偶见压力结构。矿体蚀变主要有硅化、绢云母化(伊利石化)、绿泥石化等,局部发育钾长石化、黑(金)云母化、黏土化、钠黝帘石化、碳酸岩化。

    图  4  普朗铜矿首采区北段手标本特征
    a. 细脉浸染状构造;b. 浸染状构造;c. 脉状构造;d. 斑杂状构造。Mol—辉钼矿,Ccp—黄铜矿,Py—黄铁矿,Po—磁黄铁矿,Qtz—石英,Bt—黑云母
    Figure  4.  Characteristics of ore hand specimen in the north section of the first mining area of Pulang copper deposit
    图  5  普朗铜矿首采区北段矿石结构特征
    a. 片状辉钼矿不均匀分布于黄铁矿、黄铜矿粒间;b. 片状辉钼矿;c. 他形粒状黄铜矿不均匀分布于黄铁矿粒间;d. 半自形—自形粒状黄铁矿、他形粒状黄铜矿不均匀分布;e. 他形粒状黝铜矿不均匀分布于磁黄铁矿、黄铜矿粒间;f. 半自形粒状毒砂不均匀分布于黄铁矿粒间;g. 他形粒状闪锌矿、磁黄铁矿不均匀分布于黄铜矿粒间;h. 他形粒状方铅矿;i. 褐铁矿不均匀交代黄铁矿、黄铜矿。Mo—辉钼矿,Ccp—黄铜矿,Py—黄铁矿,Po—磁黄铁矿,Thr—黝铜矿,Apy—毒砂,Sp—闪锌矿,Gn—方铅矿,Lm—褐铁矿
    Figure  5.  Ore textures of the northern section of the first mining area of Pulang copper deposit

    为了保证样品数据的有效性、代表性、真实性,本次从新鲜的岩浆岩中共采集了6件代表性样品以用于Re-Os同位素定年。样品分布于22线、26线、28线及30线的主岩体中,岩性为石英二长斑岩。其中PLBKTD-1号样采自ZK2803孔中407.65~446.43 m段,PLBKTD-2号样采自ZK2604孔中477.56~597.90 m段,PLBKTD-5号样采自ZK2203孔中277.35~358.27 m段,PLBKTD-6号样采自ZK2205孔中274.10~286.20 m段,PLBKTD-7号样品344.10~363.98 m段,PLBKTD-8号样采自ZK3003孔471.47~500 m 段。单件样品采集质量>1 kg,采样方式为打点(打块)样。

    本次辉钼矿的挑选由自然资源和规划部昆明矿产资源监督检测中心完成。Re-Os同位素分析工作由南京宏创地质勘查技术服务有限公司承担,测试方法为同位素稀释卡洛斯(Carius)管封闭溶样法。步骤如下:①将辉钼矿样品放入封闭Carius管中,加入逆王水以充分溶解样品;②加入混合稀释剂,并使其与样品的Re-Os同位素达到交换平衡;③利用化学方法分别分离出Re和Os;④采用四极杆电感耦合等离子体质谱(ICP-MS)分别测定样品中Re和Os同位素比值。最后根据测得的数据,计算得到Re-Os同位素年龄。

    值得注意的是,在辉钼矿Re-Os测年中应用混合稀释剂可提高年龄精度,然而不同Re/Os混合稀释剂及稀释剂加入的使用要求十分严格。由于样品差异,辉钼矿具有不同的年龄和Re、Os含量,需要加入的稀释剂也不同,否则会造成Re-Os年龄不确定度较大。此外,样品与稀释剂的同位素交换需要达到平衡,否则也会引入较大的误差。本次测试的同位素比值的测量精度在0.2%左右,Os精度在(0.2~2)×10-9,Re精度为0.3×10-9,年龄测量精度为2%。

    本次辉钼矿Re-Os同位素测试结果见表2187Os为总187Os。样品和稀释剂的称量误差、稀释剂的标定误差、质谱测量的分馏校正误差以及待分析样品同位素比值测量误差等均可导致Re、Os含量的不确定度。模式年龄的不确定度还包括衰变常数的不确定度(1.02%),置信水平为95%。

    表  2  普朗铜矿首采区北段辉钼矿Re-Os同位素测试结果
    Table  2.  Re-Os isotope test results of molybdenite in the north section of the first mining area of Pulang copper deposit
    样号187Re/10-6187Os/10-9Re/10-6模式年龄/Ma
    测量值1σ测量值1σ测量值1σ计算值1σ
    PLBKTD-293.701.553193.1149.682.48204.21.9
    PLBKTD-5128.143.434334.6204.705.48202.52.1
    PLBKTD-6234.914.337866.7375.266.92200.51.7
    PLBKTD-1144.151.604902.3230.272.55203.72.0
    PLBKTD-8110.941.213751.2177.231.93202.30.5
    PLBKTD-7278.494.929388.9444.877.85201.82.9
    下载: 导出CSV 
    | 显示表格

    由于辉钼矿具有很低的普通Os含量,几乎所有的187Os均为187Re的β衰变而来。因此可利用以下公式来计算模式年龄(t):t=(1/λ)[ln(187Os/187Re+1)],其中衰变常数λ=1.666×10-11a-1Shen et al.,1996)。由表1可见,6件辉钼矿样品中Re的含量较高且比较接近,Re含量为(149680±2477444870±7853)×10-9l87Re与l87Os表现出正相关性,表明本次研究中的辉钼矿Re-Os定年是可靠的。

    本次研究的6个数据点加权拟合后构成一条良好的187Re–187Os等时线(图6a),获得了(200.7±9.2)Ma的等时线年龄。辉钼矿Re–Os模式年龄集中于(200.5±1.7)Ma~(204.2±1.9)Ma(不确定度1σ),利用ISOPLOT软件(Ludwig,2003)得到其加权平均年龄为(202.35±0.84)Ma(MSWD=0.52)(图6b)。等时线年龄与模式年龄在误差范围内是一致的,说明本次研究的辉钼矿样品是同一期矿化作用的产物,这与野外实际观察到的地质情况相符。

    图  6  普朗铜矿首采区北段辉钼矿Re-Os等时线年龄(a)和加权平均模式年龄(b)
    Figure  6.  Re-Os isochron age (a) and weighted average model age (b) of molybdenite in the north section of the first mining area of Pulang copper deposit

    Re-Os同位素定年法是矿床年代学中不可或缺的技术手段之一(Qi et al.,2016; Barra et al.,2017; Hogmalm et al.,2019; Huang et al.,2021; 谭笑林等,2022; 尹一凡等,2022; 李欣尉等,2023)。辉钼矿由于具有极高含量的Re以及极低含量的初始Os,是Re-Os同位素定年的理想对象,得到了各地质学者的极大认可(Qi et al.,2016; 覃曼等,2017; 尹一凡等,2022)。Re-Os法在钼矿、铜矿、钨矿和铅锌等金属矿床,富有机制沉积岩以及油气藏年代学研究中得到了广泛的应用(Wang et al.,2018a; Chen et al.,2019; Sai et al.,2020; Moilanen et al.,2021; 许晓杰等,2022)。本次研究结果表明,普朗铜矿南矿段20线以北辉钼矿形成于(200.7±9.2)Ma或(202.35±0.84)Ma,成矿时代为晚三叠世。

    普朗矿床发现至今,许多学者对南部侵入岩、蚀变和矿物开展了地质年代学研究,包括锆石U-Pb、黑云母Ar-Ar、辉钼矿Re-Os等同位素方法,取得了丰硕的成果(表3)。前人对普朗矿区侵入岩、蚀变和矿物地质年代学进行了总结,将斑岩划分为成矿前的石英闪长斑岩(223±3.7 Ma)、成矿期的石英二长斑岩(218±4 Ma)和成矿后的花岗斑岩(207±3.9 Ma);辉钼矿和蚀变矿物的形成年龄在误差范围内与矿化期斑岩一致(Cao et al.,2019; Li et al.,2022)。本次研究获得普朗南部20线以北矿体的成矿年龄误差稍大(202.35±0.84 Ma~200.7±9.2 Ma),略晚于首采区矿体的形成时代(219.7±3.4 Ma~211.4±3.6 Ma),可见首采区北段与首采区矿体为同成因岩浆活动的产物。

    表  3  普朗南部侵入岩、蚀变和矿物地质年代学统计表
    Table  3.  Statistical table of intrusive rocks, alteration, and mineral geochronology in southern Pulang
    样品性质 矿物 测试方法 年龄/Ma 数据来源
    粗粒石英闪长斑岩 锆石 U-Pb(ID-TIMS) 221.0 ± 1.0 庞振山等,2009; Pang et al.,2014
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 224.2 ± 1.7 Wang et al.,2011
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 217.9 ± 1.8 Wang et al.,2011
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 220.8 ± 4.1 刘学龙等,2012
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 220.5 ± 3.2 刘学龙和李文昌,2013
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 219.6 ± 3.5 刘学龙等,2013
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 211.8 ± 1.9 Chen et al.,2014
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 217.2 ± 1.4 Chen et al.,2014
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 215.3 ± 1.4 Chen et al.,2014
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 225.9 ± 3.7 Yang et al.,2018
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 215.2 ± 1.2 Leng et al.,2018a
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 215.2 ± 1.7 Leng et al.,2018a
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 213.5 ± 1.9 Leng et al.,2018a
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 216.5 ± 1.5 Cao et al.,2019
    石英二长斑岩 锆石 U-Pb(SHRIMP) 228.0 ± 3.0 王守旭等,2008
    石英二长斑岩 锆石 U-Pb(SHRIMP) 226.3 ± 2.8 王守旭等,2008
    石英二长斑岩 锆石 U-Pb(SHRIMP) 226.0 ± 3.0 王守旭等,2008
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 214.8 ± 3.5 刘学龙等,2012
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.9 ± 3.1 刘学龙和李文昌,2013
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 214.8 ± 1.4 刘学龙和李文昌,2013
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 212.8 ± 1.9 刘学龙等,2013
    石英二长斑岩 锆石 U-Pb(ID-TIMS) 211.8 ± 0.5 庞振山等,2009; Pang et al.,2014
    石英二长斑岩 锆石 U-Pb(SIMS) 215.0 ± 1.3 Kong et al.,2016
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 217.0 ± 1.3 Leng et al.,2018a
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 216.4 ± 1.4 Leng et al.,2018a
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 217.6 ± 1.3 Leng et al.,2018a
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 217.1 ± 1.8 Leng et al.,2018b
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 216.0 ± 1.2 Leng et al.,2018b
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.1 ± 1.3 Leng et al.,2018b
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 211.6 ± 3.1 Wang et al.,2018b
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.4 ± 1.8 Yang et al.,2018
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.5 ± 1.4 Cao et al.,2019
    闪长斑岩 锆石 U-Pb(LA-ICP-MS) 218.0 ± 0.8 Cao et al.,2019
    蚀变 黑云母 40Ar/39Ar 216.0 ± 1.0 曾普胜等,2006; Li et al.,2011
    蚀变 黑云母 40Ar/39Ar 214.6 ± 0.9 曾普胜等,2006; Li et al.,2011
    矿化 辉钼矿 Re-Os(ID-ICP-MS) 216.3 ± 3.5~211.4 ± 3.6 曾普胜等,2006; Li et al.,2011
    矿化 辉钼矿 Re-Os(ID-ICP-MS) 219.7 ± 3.4~218.0 ± 3.4 曹殿华,2007
    矿化 辉钼矿 Re-Os(ID-NTIMS) 216.54 ± 0.87~216.13 ± 0.86 Cao et al.,2019
    矿化 辉钼矿 Re-Os(ID-ICP-MS) 200.7 ± 9.2~202.35 ± 0.84 本次研究
    下载: 导出CSV 
    | 显示表格

    超大型斑岩矿床往往伴随着周期性岩浆热液流体的脉动而形成,经历较长间歇性、多期次的金属沉淀过程,持续时间高达几个甚至十几个百万年(Sillitoe and Mortensen,2010)。普朗南部Ⅰ号复式岩体中成矿事件也经历了较长的时间(约20 Ma),或许与成矿流体多次幕式活动有关(Li et al.,2017; 陈奇等,2022)。表明普朗铜矿经历了周期性矿化叠加,在首采区北段发生了较晚期的金属矿化沉淀,可见研究区具有较大的勘探潜力。

    Re-Os同位素体系不仅可以确定成矿年龄,还常被用来示踪成矿物质来源。Mao et al.(1999)总结研究了全国主要不同类型矿床中辉钼矿Re的含量,认为壳源、壳幔混源到幔源辉钼矿中Re含量依次递增,分别为10-6、10-5和10-4量级(Mao et al.,1999)。这一结论也被之后的研究所证实(Stein et al.,2001)。本次研究所测得的普朗铜矿件矿石样品中辉钼矿Re含量为1.50×10-4~4.45×10-4,平均为2.64×10-4,表明成矿物质主要来源于地幔。

    普朗铜矿首采区北段英闪长玢岩(n=10)和石英二长斑岩(n=12)的岩石地球化学显示,其属于高钾钙碱系列、准铝质‒弱过铝质I型花岗岩;微量元素富集K、Rb、Ba等大离子亲石元素(LILE),明显亏损Ta、Nb、P、Ti等高场强元素(HFSF),呈现轻稀土元素富集、重稀土元素亏损的右倾型配分模式;其较高的Sr含量(614×10-61513×10-6)、较低的Y(7.7×10-6~17.1×10-6)和Yb(0.7×10-6~1.4×10-6)含量,以及较高的Sr/Y(43~155)、La/Nb(1.2~3.8)、Ba/La(21~134)和Ba/Nb(47~176)值表明其具有埃达克质岩石的部分特征。可见,普朗地区中酸性侵入岩形成于与板片俯冲有关的火山弧环境中。

    格咱矿集区所在的义敦地体在古生代属扬子陆块西部边缘的一部分,晚古生代中晚期,因甘孜–理塘洋的开启而裂离扬子陆块(侯增谦等,2004);早三叠世—中三叠世早期,义敦地体东侧的甘孜–理塘洋持续扩张(曹晓民等,2022)。晚三叠世,甘孜–理塘洋壳开始以倾斜的角度向西俯冲到义敦地体之下,形成义敦岛弧带(曾普胜等,2006)。义敦岛弧带南段格咱地区的平坦俯冲导致大洋板块部分熔融,并诱发大量的埃达克质岩浆的上涌,形成一系列的斑岩铜矿(Cai et al.,2023)(图7)。成矿物质主要来自深部岩浆,主要起源于俯冲洋壳板片的部分熔融和上地幔,并受到少量地壳物质的混染(冷成彪等,2008曹殿华等,2009)。

    图  7  普朗铜矿成矿动力学背景(修改自Cai et al.,2023
    Figure  7.  Metallogenic dynamic background of Pulang copper deposit (modified from Cai et al.,2023)

    (1)普朗铜矿南矿段20线以北辉钼矿Re-Os同位素加权平均模式年龄为(202.35±0.84)Ma,等时线年龄为(200.7±9.2)Ma,略晚于首采区矿体的形成时代。普朗南部Ⅰ号复式岩体中成矿事件经历了较长的时间(约20 Myr),或许与成矿流体多次幕式活动有关,表明普朗南部20线以北具有较大的勘探潜力。

    (2)普朗铜矿件矿石样品中辉钼矿Re含量为1.50×10-4~4.45×10-4,平均为2.64×10-4,表明成矿物质主要来源于地幔。成矿背景为甘孜–理塘洋向西平坦俯冲于义敦岛弧带南段格咱地区导致大洋板块部分熔融,并诱发大量的埃达克质岩浆的上涌而成矿。

    ① 云南迪庆有色金属有限责任公司,中国有色金属工业昆明勘察设计研究有限公司,2021. 普朗铜矿KT1矿体20线以北成矿规律研究报告[R].

  • 图  1   区域大地构造位置(a)、义敦岛弧构造地质简图(b)及格咱地区地质简图(c,张少颖等,2020

    Figure  1.   Tectonic outline of the study area (a), tectonic framework of the Yidun arc (b) and geologic sketch map of the Gezan area (c, after Zhang et al., 2020)

    图  2   普朗铜矿南矿段地质图

    Figure  2.   Geological map of the southern ore block of Pulang copper deposit

    图  3   普朗铜矿22线(左)、28线(右)地质剖面图

    Figure  3.   Geological sections of Line-22 (left) and Line-28 (right) of Pulang copper deposit

    图  4   普朗铜矿首采区北段手标本特征

    a. 细脉浸染状构造;b. 浸染状构造;c. 脉状构造;d. 斑杂状构造。Mol—辉钼矿,Ccp—黄铜矿,Py—黄铁矿,Po—磁黄铁矿,Qtz—石英,Bt—黑云母

    Figure  4.   Characteristics of ore hand specimen in the north section of the first mining area of Pulang copper deposit

    图  5   普朗铜矿首采区北段矿石结构特征

    a. 片状辉钼矿不均匀分布于黄铁矿、黄铜矿粒间;b. 片状辉钼矿;c. 他形粒状黄铜矿不均匀分布于黄铁矿粒间;d. 半自形—自形粒状黄铁矿、他形粒状黄铜矿不均匀分布;e. 他形粒状黝铜矿不均匀分布于磁黄铁矿、黄铜矿粒间;f. 半自形粒状毒砂不均匀分布于黄铁矿粒间;g. 他形粒状闪锌矿、磁黄铁矿不均匀分布于黄铜矿粒间;h. 他形粒状方铅矿;i. 褐铁矿不均匀交代黄铁矿、黄铜矿。Mo—辉钼矿,Ccp—黄铜矿,Py—黄铁矿,Po—磁黄铁矿,Thr—黝铜矿,Apy—毒砂,Sp—闪锌矿,Gn—方铅矿,Lm—褐铁矿

    Figure  5.   Ore textures of the northern section of the first mining area of Pulang copper deposit

    图  6   普朗铜矿首采区北段辉钼矿Re-Os等时线年龄(a)和加权平均模式年龄(b)

    Figure  6.   Re-Os isochron age (a) and weighted average model age (b) of molybdenite in the north section of the first mining area of Pulang copper deposit

    图  7   普朗铜矿成矿动力学背景(修改自Cai et al.,2023

    Figure  7.   Metallogenic dynamic background of Pulang copper deposit (modified from Cai et al.,2023)

    表  1   普朗KT1主矿体研究区与首采区控矿因素特征对比

    Table  1   Comparison of ore-controlling factors between the research area and the first mining area of Pulang KT1 main ore body

    位置 首采区(7—20线) 研究区(20—44线)
    控矿岩
    性特征
    成矿岩性 石英二长斑岩,花岗闪长斑岩,少量粗粒石英闪长玢岩 石英二长斑岩为主,少量粗粒石英闪长玢岩
    赋矿位置 岩体内、局部角岩 岩体内,局部角岩
    控矿蚀
    变分带
    特征
    蚀变分带 从内到外依次为:钾硅化带→(黄铁)绢英
    岩化带→青磐岩化带(泥化叠加于后两种蚀变之上)
    从内到外依次为:钾硅化带(规模小)→
    (黄铁)绢英岩化带(部分叠加在钾硅化带
    上)→青磐岩化带(泥化叠加于它们之上)
    蚀变分带特征矿物 钾硅化带:石英+钾长石+黑云母+钠长石;
    (黄铁)绢英岩化带:绢云母+石英;
    青磐岩化带:绿泥石+绿帘石+方解石;
    泥化带:伊利石+高岭土等黏土矿物
    钾硅化带:石英+钾长石±黑云母或石英(脉)+钾长石或石英(脉)+黑(金)云母;
    (黄铁)绢英岩化带:绢云母+石英(脉);
    青磐岩化带:绿泥石+绿帘石+方解石;
    泥化:高岭土+蒙脱石±绿脱石±地开石等
    蚀变分带金属特征矿物 钾硅化带:黄铜矿+辉钼矿+黄铁矿(少);
    (黄铁)绢英岩化带:黄铜矿+黄铁矿+辉钼矿+磁黄铁矿;
    青磐岩化带:黄铁矿+磁黄铁矿+黄铜矿;
    钾硅化带:黄铜矿+黄铁矿±辉钼矿(少);
    绢英岩化带:黄铜矿+黄铁矿+辉钼矿+磁黄
    铁矿;
    青磐岩化带:黄铁矿±磁黄铁矿±黄铜矿
    与矿体有关的蚀变 钾硅化带、绢英岩带 绢英岩化带为主,少量钾硅化带
    构造控
    矿特征
    区域黑水塘断裂与全干力达断裂、次级构造破碎带、节理裂隙及微裂隙系统 区域黑水塘断裂与全干力达断裂、次级构造破碎带、节理裂隙及微裂隙系统
    下载: 导出CSV

    表  2   普朗铜矿首采区北段辉钼矿Re-Os同位素测试结果

    Table  2   Re-Os isotope test results of molybdenite in the north section of the first mining area of Pulang copper deposit

    样号187Re/10-6187Os/10-9Re/10-6模式年龄/Ma
    测量值1σ测量值1σ测量值1σ计算值1σ
    PLBKTD-293.701.553193.1149.682.48204.21.9
    PLBKTD-5128.143.434334.6204.705.48202.52.1
    PLBKTD-6234.914.337866.7375.266.92200.51.7
    PLBKTD-1144.151.604902.3230.272.55203.72.0
    PLBKTD-8110.941.213751.2177.231.93202.30.5
    PLBKTD-7278.494.929388.9444.877.85201.82.9
    下载: 导出CSV

    表  3   普朗南部侵入岩、蚀变和矿物地质年代学统计表

    Table  3   Statistical table of intrusive rocks, alteration, and mineral geochronology in southern Pulang

    样品性质 矿物 测试方法 年龄/Ma 数据来源
    粗粒石英闪长斑岩 锆石 U-Pb(ID-TIMS) 221.0 ± 1.0 庞振山等,2009; Pang et al.,2014
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 224.2 ± 1.7 Wang et al.,2011
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 217.9 ± 1.8 Wang et al.,2011
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 220.8 ± 4.1 刘学龙等,2012
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 220.5 ± 3.2 刘学龙和李文昌,2013
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 219.6 ± 3.5 刘学龙等,2013
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 211.8 ± 1.9 Chen et al.,2014
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 217.2 ± 1.4 Chen et al.,2014
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 215.3 ± 1.4 Chen et al.,2014
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 225.9 ± 3.7 Yang et al.,2018
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 215.2 ± 1.2 Leng et al.,2018a
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 215.2 ± 1.7 Leng et al.,2018a
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 213.5 ± 1.9 Leng et al.,2018a
    粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 216.5 ± 1.5 Cao et al.,2019
    石英二长斑岩 锆石 U-Pb(SHRIMP) 228.0 ± 3.0 王守旭等,2008
    石英二长斑岩 锆石 U-Pb(SHRIMP) 226.3 ± 2.8 王守旭等,2008
    石英二长斑岩 锆石 U-Pb(SHRIMP) 226.0 ± 3.0 王守旭等,2008
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 214.8 ± 3.5 刘学龙等,2012
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.9 ± 3.1 刘学龙和李文昌,2013
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 214.8 ± 1.4 刘学龙和李文昌,2013
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 212.8 ± 1.9 刘学龙等,2013
    石英二长斑岩 锆石 U-Pb(ID-TIMS) 211.8 ± 0.5 庞振山等,2009; Pang et al.,2014
    石英二长斑岩 锆石 U-Pb(SIMS) 215.0 ± 1.3 Kong et al.,2016
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 217.0 ± 1.3 Leng et al.,2018a
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 216.4 ± 1.4 Leng et al.,2018a
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 217.6 ± 1.3 Leng et al.,2018a
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 217.1 ± 1.8 Leng et al.,2018b
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 216.0 ± 1.2 Leng et al.,2018b
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.1 ± 1.3 Leng et al.,2018b
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 211.6 ± 3.1 Wang et al.,2018b
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.4 ± 1.8 Yang et al.,2018
    石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.5 ± 1.4 Cao et al.,2019
    闪长斑岩 锆石 U-Pb(LA-ICP-MS) 218.0 ± 0.8 Cao et al.,2019
    蚀变 黑云母 40Ar/39Ar 216.0 ± 1.0 曾普胜等,2006; Li et al.,2011
    蚀变 黑云母 40Ar/39Ar 214.6 ± 0.9 曾普胜等,2006; Li et al.,2011
    矿化 辉钼矿 Re-Os(ID-ICP-MS) 216.3 ± 3.5~211.4 ± 3.6 曾普胜等,2006; Li et al.,2011
    矿化 辉钼矿 Re-Os(ID-ICP-MS) 219.7 ± 3.4~218.0 ± 3.4 曹殿华,2007
    矿化 辉钼矿 Re-Os(ID-NTIMS) 216.54 ± 0.87~216.13 ± 0.86 Cao et al.,2019
    矿化 辉钼矿 Re-Os(ID-ICP-MS) 200.7 ± 9.2~202.35 ± 0.84 本次研究
    下载: 导出CSV
  • [1]

    Barra F,Deditius A,Reich M,et al.,2017. Dissecting the Re-Os molybdenite geochronometer [J]. Scientific Reports,7(1):16054.

    [2]

    Cai X,Zhang X,Yang Z,et al.,2023. Magma mixing affected the Late Triassic porphyry mineralization in the Yidun Arc in SW China[J]. Ore Geology Reviews,152:105225. DOI: 10.1016/j.oregeorev.2022.105225

    [3] 曹殿华,王安建,黄玉凤,等,2009. 中甸弧雪鸡坪斑岩铜矿含矿斑岩锆石SHRIMP U-Pb年代学及Hf同位素组成[J]. 地质学报,83(10):1430 − 1435. DOI: 10.3321/j.issn:0001-5717.2009.10.007

    Cao D H,Wang A J,Huang Y F,et al.,2009. SHRIMP geochronology and Hf isotope composition of zircons from Xuejiping porphyry copper deposit,Yunnan Province[J]. Acta Geologica Sinica,83(10):1430 − 1435 (in Chinese with English abstract). DOI: 10.3321/j.issn:0001-5717.2009.10.007

    [4] 曹殿华,2007. 中甸地区斑岩铜矿成矿模式与综合勘查评价技术研究[D]. 北京:中国地质科学院.

    Cao D H,2008. Study on metallogenic model and comprehensive exploration evaluation technology of porphyry copper deposits in Zhongdian area[D]. Beijing:Chinese Academy of Geological Sciences (in Chinese with English abstract).

    [5]

    Cao K,Yang Z M,Mavrogenes J,et al.,2019. Geology and genesis of the giant Pulang porphyry Cu-Au district,Yunnan,Southwest China[J]. Economic Geology,114(2):275 − 301. DOI: 10.5382/econgeo.2019.4631

    [6]

    Cao K,Yang Z M,White N C,et al.,2022. Generation of the giant porphyry Cu-Au deposit by repeated recharge of mafic magmas at Pulang in Eastern Tibet[J]. Economic Geology,117(1):57 − 90. DOI: 10.5382/econgeo.4860

    [7] 曹晓民,董涛,余海军,等,2022. 滇西北香格里拉市格咱铜多金属矿集区地质演化与成矿作用[J]. 沉积与特提斯地质,42(1):50 − 61.

    Cao X M,Dong T,Yu H J,et al.,2022. Geological evolution and metallogenesis of Gezan copper polymetallic ore concentration area in Shangri-La City,Northwestern Yunnan[J]. Sedimentary Geology and Tethyan Geology,42(1):50 − 61 (in Chinese with English abstract).

    [8]

    Chen J F,Sheng D,Shao Y J,et al.,2019. Silurian S-type granite-related W-(Mo) mineralization in the Nanling range,South China:A case study of the Pingtan W-(Mo) deposit[J]. Ore Geology Reviews,107:186 − 200. DOI: 10.1016/j.oregeorev.2019.02.020

    [9]

    Chen J L,Xu J F,Ren J B,et al.,2014. Geochronology and geochemical characteristics of late Triassic porphyritic rocks from the Zhongdian arc,Eastern Tibet,and their tectonic and metallogenic implications[J]. Gondwana Research,26(2):492 − 504. DOI: 10.1016/j.gr.2013.07.022

    [10] 陈奇,王长明,祝佳萱,等,2022. 斑岩矿床成矿时间尺度的研究进展:以藏东玉龙斑岩铜(钼)矿床为例[J]. 岩石学报,38(1):109 − 123. DOI: 10.18654/1000-0569/2022.01.08

    Chen Q,Wang C M,Zhu J X,et al.,2022. Advances in research of the time scales of porphyry deposits:A case study of the Yulong porphyry Cu-Mo deposit in the Eastern Tibet[J]. Acta Petrologica Sinica,38(1):109 − 123 (in Chinese with English abstract). DOI: 10.18654/1000-0569/2022.01.08

    [11] 邓军,王庆飞,李龚健,2016. 复合造山和复合成矿系统:三江特提斯例析[J]. 岩石学报,32(8):2225 − 2247.

    Deng J,Wang Q F,Li G J,2016. Superimposed orogeny and composite metallogenic system:Case study from the Sanjiang Tethyan belt,SW China[J]. Acta Petrologica Sinica,32(8):2225 − 2247 (in Chinese with English abstract).

    [12] 董桥峰,陈明勇,沈啟武,等,2021. 滇西北普朗铜矿南矿段20线以北蚀变矿物分布特征及组合分带模式[J]. 矿产与地质,35(5):855 − 866.

    Dong Q F,Chen M Y,Shen Q W,et al.,2021. Alteration mineral distribution characteristics and combination zonation model in the north of prospecting line No. 20 at the south section of Pulang copper deposit in Northwest Yunnan[J]. Mineral Resources and Geology,35(5):855 − 866 (in Chinese with English abstract).

    [13] 范玉华,李文昌,2006. 云南普朗斑岩铜矿床地质特征[J]. 中国地质,33(2):352 − 362.

    Fan Y H,Li W C,2006. Geological characteristics of the Pulang porphyry copper deposit,Yunnan[J]. Geology in China,33(2):352 − 362 (in Chinese with English abstract).

    [14]

    Hogmalm K J,Dahlgren I,Fridolfsson I,et al.,2019. First in situ Re-Os dating of molybdenite by LA-ICP-MS/MS[J]. Mineralium Deposita,54(6):821 − 828. DOI: 10.1007/s00126-019-00889-1

    [15] 侯增谦,杨岳清,曲晓明,等,2004. 三江地区义敦岛弧造山带演化和成矿系统[J]. 地质学报,78(1):109 − 120. DOI: 10.3321/j.issn:0001-5717.2004.01.013

    Hou Z Q,Yang Y Q,Qu X M,et al.,2004. Evolution and metallogenesis of the Yidun island arc in the Sanjiang region[J]. Acta Geologica Sinica,78(1):109 − 120 (in Chinese with English abstract). DOI: 10.3321/j.issn:0001-5717.2004.01.013

    [16]

    Huang X W,Qi L,Gao J F,et al.,2021. Re–Os dating of molybdenite via improved alkaline fusion [J]. Journal of Analytical Atomic Spectrometry,36(1),64 − 69.

    [17]

    Kong D X,Xu J F,Chen J L,2016. Oxygen isotope and trace element geochemistry of zircons from porphyry copper system:Implications for Late Triassic metallogenesis within the Yidun terrane,Southeastern Tibetan Plateau [J]. Chemical Geology,441:148 − 161.

    [18]

    Leng C B,Cooke D R,Hou Z Q,et al.,2018a. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating[J]. Economic Geology,113(5):1077 − 1092. DOI: 10.5382/econgeo.2018.4582

    [19]

    Leng C B,Gao J F,Chen W T,et al.,2018b. Platinum-group elements,zircon Hf-O isotopes,and mineralogical constraints on magmatic evolution of the Pulang porphyry Cu-Au system,SW China[J]. Gondwana Research,62:163 − 177. DOI: 10.1016/j.gr.2018.03.001

    [20]

    Leng C B,Huang Q Y,Zhang X C,et al.,2014. Petrogenesis of the Late Triassic volcanic rocks in the Southern Yidun Arc,SW China:Constraints from the geochronology,geochemistry,and Sr–Nd–Pb–Hf isotopes[J]. Lithos,190 − 191:363 − 382. DOI: 10.1016/j.lithos.2013.12.018

    [21]

    Leng C B,Zhang X C,Hu R,et al.,2012. Zircon U–Pb and molybdenite Re–Os geochronology and Sr–Nd–Pb–Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian,Northwest Yunnan,China[J]. Journal of Asian Earth Sciences,60:31 − 48. DOI: 10.1016/j.jseaes.2012.07.019

    [22] 冷成彪,张兴春,王守旭,等,2008. 滇西北中甸松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义[J]. 大地构造与成矿学,32(1):124 − 130. DOI: 10.3969/j.issn.1001-1552.2008.01.016

    Leng C B,Zhang X C,Wang S X,et al.,2008. SHRIMP zircon U-Pb dating of the Songnuo ore-hosted porphyry,Zhongdian,Northwest Yunnan,China and its geological implication[J]. Geotectonica Et Metallogenia,32(1):124 − 130 (in Chinese with English abstract). DOI: 10.3969/j.issn.1001-1552.2008.01.016

    [23]

    Li W C,Zeng P S,Hou Z Q,et al.,2011. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province,Southwest China[J]. Economic Geology,106(1):79 − 92. DOI: 10.2113/econgeo.106.1.79

    [24]

    Li W C,Zhang X F,Yu H J,et al.,2022. Geology and mineralization of the Pulang superlarge porphyry copper deposit (5.11 Mt) in Shangri-la,Yunnan Province,China:A review[J]. China Geology,5:1 − 34.

    [25] 李欣尉,李超,周利敏,等,2023. 富碳质地质样品Re-Os同位素体系研究进展[J]. 岩矿测试,42(2):221 − 238.

    Li X W,Li C,Zhou L,et al.,2023. A review of research progress on Re-Os isotopic system of carbon-enriched geological samples[J]. Rock and Mineral Analysis,42(2),221 − 238 (in Chinese with English abstract).

    [26]

    Li Y,Selby D,Condon D,et al.,2017. Cyclic magmatic-hydrothermal evolution in porphyry systems:High-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit[J]. Economic Geology,112(6):1419 − 1440. DOI: 10.5382/econgeo.2017.4515

    [27] 刘学龙,李文昌,尹光侯,等,2012. 云南省格咱岛弧印支期岩浆演化及普朗斑岩型铜矿成矿作用[J]. 地质学报,86(12):1933 − 1945. DOI: 10.3969/j.issn.0001-5717.2012.12.006

    Liu X L,Li W C,Yin G H,et al.,2012. Magmatic evolution and porphyry Cu mineralization of the Gezan island arc in Yunnan Province during the Indosinian period[J]. Acta Geologica Sinica,86(12):1933 − 1945 (in Chinese with English abstract). DOI: 10.3969/j.issn.0001-5717.2012.12.006

    [28] 刘学龙,李文昌,尹光侯,等,2013. 云南格咱岛弧普朗斑岩型铜矿年代学、岩石矿物学及地球化学研究[J]. 岩石学报,29(9):3049 − 3064.

    Liu X L,Li W C,Yin G H,et al.,2013. The geochronology,mineralogy and geochemistry study of the Pulang porphyry copper deposits in Geza arc of Yunnan Province[J]. Acta Petrologica Sinica,29(9):3049 − 3064 (in Chinese with English abstract).

    [29] 刘学龙,李文昌,2013. 云南格咱岛弧印支期岩浆作用的锆石年龄和铪同位素证据[J]. 地学前缘,20(5):57 − 74.

    Liu X L,Li W C,2013. The Indo-Chinese epoch magmatism in Gega arc of Yunnan:Evidences from zircon U-Pb dating and Hf isotopic composition[J]. Earth Science Frontiers,20(5):57 − 74 (in Chinese with English abstract).

    [30]

    Ludwig K,2003.Isoplot 3.0:A geochronological toolkit for microsoft excel [J]. Berkeley Geochronology Center Special Publication,4:1 − 74.

    [31]

    Mao J W,Zhang Z C,Zhang Z H,et al.,1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the Northern Qilian mountains and its geological significance[J]. Geochimica et Cosmochimica Acta,63(11):1815 − 1818.

    [32]

    Moilanen M,Hanski E,Yang S H,2021. Re-Os isotope geochemistry of the Palaeoproterozoic Sakatti Cu-Ni-PGE sulphide deposit in Northern Finland [J]. Ore Geology Reviews,132:104044.

    [33]

    Pang Z S,Du Y S,Cao Y,et al.,2014. Geochemistry and zircon U–Pb geochronology of the Pulang complex,Yunnan Province,China[J]. Journal of Earth System Science,123(4):875 − 885. DOI: 10.1007/s12040-014-0429-9

    [34] 庞振山,杜杨松,王功文,等,2009. 云南普朗复式岩体锆石U-Pb年龄和地球化学特征及其地质意义[J]. 岩石学报,25(1):159 − 165.

    Pang Z S,Du Y S,Wang G W,et al.,2009. Single-grain zircon U-Pb isotopic ages,geochemistry and its implication of the Pulang complex in Yunnan Province,China[J]. Acta Petrologica Sinica,25(1):159 − 165 (in Chinese with English abstract).

    [35]

    Qi L,Gao J F,Meng Y M,2016. Some thoughts on sulfide Re-Os isotope dating [J]. Bulletin of Mineralogy Petrology and Geochemistry,35:432 − 440.

    [36] 覃曼,周瑶琪,刘加召,等,2017. 铼−锇同位素体系定年研究综述[J]. 地质找矿论丛,32(3):421 − 427. DOI: 10.6053/j.issn.1001-1412.2017.03.010

    Qin M,Zhou Y Q,Liu J Z,et al.,2017. Review of Re-Os geochronology[J]. Contributions to geology and mineral resources research,32(3):421 − 427 (in Chinese with English abstract). DOI: 10.6053/j.issn.1001-1412.2017.03.010

    [37]

    Sai Y M,Jin K,Luo M,et al.,2020. Recent progress on the research of Re–Os geochronology and Re–Os elemental and isotopic systematics in petroleum systems[J]. Journal of Natural Gas Geoscience,5(6):355 − 365. DOI: 10.1016/j.jnggs.2020.11.003

    [38]

    Shen J,Papanastassiou D,Wasserburg G,1996. Precise Re-Os determinations and systematics of iron meteorites [J]. Geochimica et Cosmochimica Acta,60(15):2887 − 2900.

    [39] 沈啟武,舒华伟,钟志勇,等,2022. 滇西北普朗铜矿20~30线岩体结构面特征分析[J]. 昆明冶金高等专科学校学报,38(1):21 − 26. DOI: 10.3969/j.issn.1009-0479.2022.01.004

    Shen Q W,Shu H W,Zhong Z Y,et al.,2022. Analysis of characteristics of rock mass structural plane at Line 20~30 of Pulang copper mine in Northwestern Yunnan[J]. Journal of Kunming Metallurgy College,38(1):21 − 26 (in Chinese with English abstract). DOI: 10.3969/j.issn.1009-0479.2022.01.004

    [40]

    Sillitoe R H,2010. Porphyry copper systems[J]. Economic Geology,105(1):3 − 41. DOI: 10.2113/gsecongeo.105.1.3

    [41]

    Sillitoe R H,Mortensen J K,2010. Longevity of porphyry copper formation at Quellaveco,Peru[J]. EconomicGeology,105 (6) :1157 − 1162.

    [42]

    Stein H J,Markey R J,Morgan J W,et al.,2001. The remarkable Re–Os chronometer in molybdenite:How and why it works[J]. Terra Nova,13(6):479 − 486. DOI: 10.1046/j.1365-3121.2001.00395.x

    [43] 谭笑林,胡煜昭,周亮,等,2022. 高演化地区古油藏Re-Os年代学与REE特征分析——以南盘江盆地板街古油藏为例[J]. 石油实验地质,44(5):877 − 886,895.

    Tan X L,Hu Y Z,Zhou L,et al.,2022. Re-Os geochronology and REE characteristics of ancient oil reservoirs in highly evolved areas:A case study of the Banjie ancient oil reservoir in the Nanpanjiang Basin [J]. Petroleum Experimental Geology,44(5),877 − 886 (in Chinese with English abstract).

    [44]

    Wang B Q,Wang W,Chen W T,et al.,2013. Constraints of detrital zircon U–Pb ages and Hf isotopes on the provenance of the Triassic Yidun group and tectonic evolution of the Yidun terrane,Eastern Tibet[J]. Sedimentary Geology,289:74 − 98. DOI: 10.1016/j.sedgeo.2013.02.005

    [45]

    Wang B Q,Zhou M F,Li J W,et al.,2011. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-la Region,Yidun Terrane,Eastern Tibetan Plateau:Adakitic magmatism and porphyry copper mineralization[J]. Lithos,127(1):24 − 38.

    [46]

    Wang P,Dong G,Zhao G,et al.,2018b. Petrogenesis of the Pulang porphyry complex,Southwestern China:Implications for porphyry copper metallogenesis and subduction of the Paleo-Tethys oceanic lithosphere[J]. Lithos,304−307:280 − 297. DOI: 10.1016/j.lithos.2018.02.009

    [47] 王守旭,张兴春,冷成彪,等,2008. 滇西北普朗斑岩铜矿锆石离子探针U-Pb年龄:成矿时限及地质意义[J]. 岩石学报,24(10):2313 − 2321.

    Wang S X,Zhang X C,Leng C B,et al.,2008. Zircon SHRIMP U-Pb dating of the Pulang porphyry copper deposit,northwestern Yunnan,China:The ore-forming time limitation and geological significance[J]. Acta Petrologica Sinica,24(10):2313 − 2321 (in Chinese with English abstract).

    [48]

    Wang Y,Zhang F,Liu J,et al.,2018a. Ore genesis and hydrothermal evolution of the Donggebi porphyry Mo deposit,Xinjiang,Northwest China:Evidence from isotopes (C,H,O,S,Pb),fluid inclusions,and molybdenite Re-Os dating[J]. Economic Geology,113:463 − 488. DOI: 10.5382/econgeo.2018.4558

    [49] 许晓杰,李超,王庆飞,等,2022. 右江盆地北山MVT铅锌矿床黄铁矿Re-Os同位素体系及其对定年的启示[J]. 岩石学报,38(6):1727 − 1740. DOI: 10.18654/1000-0569/2022.06.12

    Xu X J,Li C,Wang Q F,et al.,2022. Pyrite Re-Os isotope system of the Beishan MVT Pb-Zn depsoit in the Youjiang Basin and its significance for dating[J]. Acta Petrologica Sinica,38(6):1727 − 1740 (in Chinese with English abstract). DOI: 10.18654/1000-0569/2022.06.12

    [50]

    Yang L Q,He W Y,Gao X,et al.,2018. Mesozoic multiple magmatism and porphyry–skarn Cu–polymetallic systems of the Yidun Terrane,Eastern Tethys:Implications for subduction and transtension-related metallogeny[J]. Gondwana Research,62:144 − 162. DOI: 10.1016/j.gr.2018.02.009

    [51] 尹一凡,漆亮,周波,等,2022. 辉钼矿Re-Os同位素定年前处理方法改进[J]. 矿物岩石地球化学通报,41(4):849 − 853.

    Yin Y F,Qi L,Zhou B,et al.,2022. Improvement of pretreatment method for Re-Os isotopic dating of molybdenite[J]. Bulletin of Mineralogy,Petrology and Geochemistry,41(4),849 − 853 (in Chinese with English abstract).

    [52] 曾普胜,侯增谦,李丽辉,等,2004. 滇西北普朗斑岩铜矿床成矿时代及其意义[J]. 地质通报,23(11):1127 − 1131. DOI: 10.3969/j.issn.1671-2552.2004.11.013

    Zeng P S,Hou Z Q,Li L H,et al.,2004. Age of the Pulang porphyry copper deposit in NW Yunnan and its geological significance[J]. Geological Bulletin of China,23(11):1127 − 1131 (in Chinese with English abstract). DOI: 10.3969/j.issn.1671-2552.2004.11.013

    [53] 曾普胜,李文昌,王海平,等,2006. 云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征 [J]. 岩石学报,22(4):989 − 1000.

    Zeng P S,Li W C,Wang H P,et al.,2006. The Indosinian Pulang superlarge porphyry copper deposit in Yunnan,China:Petrology and chronology [J]. Acta Petrologica Sinica,22(4),989 − 1000 (in Chinese with English abstract).

    [54] 张少颖,和文言,高雪,等,2020. 斑岩铜矿床成矿流体演化:中甸普朗铜矿床蚀变矿物学与热力学模拟[J]. 岩石学报,36(5):1611 − 1626.

    Zhang S Y,He W Y,Gao X,et al.,2020. Ore-forming fluids evolution of the porphyry Cu deposits:Alteration mineralogy and thermodynamic modeling of the Pulang Cu deposit,Zhongdian district[J]. Acta Petrologica Sinica,36(5),1611 − 1626 (in Chinese with English abstract).

图(7)  /  表(3)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2024-02-24
  • 录用日期:  2024-04-14
  • 刊出日期:  2025-03-19

目录

/

返回文章
返回