高级检索

    滇西北普朗铜矿首采区北段辉钼矿Re-Os同位素定年及其地质意义

    孔垂爱, 舒华伟, 沙有财, 陈明勇, 董桥峰, 唐思宇, 冷开杰, 李莹

    孔垂爱,舒华伟,沙有财,等,2025. 滇西北普朗铜矿首采区北段辉钼矿Re-Os同位素定年及其地质意义[J]. 沉积与特提斯地质,45(1):200−211. DOI: 10.19826/j.cnki.1009-3850.2024.12006
    引用本文: 孔垂爱,舒华伟,沙有财,等,2025. 滇西北普朗铜矿首采区北段辉钼矿Re-Os同位素定年及其地质意义[J]. 沉积与特提斯地质,45(1):200−211. DOI: 10.19826/j.cnki.1009-3850.2024.12006
    KONG C A,SHU H W,SHA Y C,et al.,2025. Re-Os geochronology and implications of molybdenite from the north section of the first mining area of the Pulang copper deposit, NW Yunnan[J]. Sedimentary Geology and Tethyan Geology,45(1):200−211. DOI: 10.19826/j.cnki.1009-3850.2024.12006
    Citation: KONG C A,SHU H W,SHA Y C,et al.,2025. Re-Os geochronology and implications of molybdenite from the north section of the first mining area of the Pulang copper deposit, NW Yunnan[J]. Sedimentary Geology and Tethyan Geology,45(1):200−211. DOI: 10.19826/j.cnki.1009-3850.2024.12006

    滇西北普朗铜矿首采区北段辉钼矿Re-Os同位素定年及其地质意义

    基金项目: 云南迪庆有色金属有限责任公司重点科技创新项目(DQYS202206)
    详细信息
      作者简介:

      孔垂爱(1984—),男,工程师,主要从事矿产资源勘查开发工作。E-mail:330173380@qq.com

      通讯作者:

      舒华伟(1987—),男,高级工程师,主要从事矿产资源勘查开发工作。E-mail:630613601@qq.com

    • 中图分类号: P624

    Re-Os geochronology and implications of molybdenite from the north section of the first mining area of the Pulang copper deposit, NW Yunnan

    • 摘要:

      普朗铜矿是三江特提斯造山带格咱矿集区内最大的印支期斑岩型Cu-Mo多金属矿床。该矿床首采区北段是矿山的重要资源储备区,其成矿特征与首采区相比具有较大差异。首采区北段与首采区是否为同一岩浆活动的产物尚不清楚,这就限制了其与首采区矿化关系的深入探讨以及对成矿规律的总体认识。本次研究对首采区20线以北的矿石辉钼矿进行了Re-Os同位素年代学研究,以期为北部区域成矿规律及资源前景的进一步探索和评价提供基础地质资料,从而指导下步补充勘探工作。结果表明,辉钼矿Re-Os同位素加权平均模式年龄为(202.35±0.84)Ma,等时线年龄为(200.7±9.2)Ma,略晚于首采区矿体的形成时代。普朗南部Ⅰ号复式岩体中成矿事件经历了较长的时间(约20 Myr),或许与成矿流体多次幕式活动有关,表明普朗首采区北段具有较大的资源潜力。普朗铜矿矿石样品中辉钼矿Re含量为1.50×10-4~4.45×10-4,平均为2.64×10-4,暗示成矿物质主要来源于地幔。成矿背景为甘孜–理塘洋向西平坦俯冲于义敦岛弧带南段格咱地区导致大洋板块部分熔融,并诱发大量的埃达克质岩浆的上涌而成矿。

      Abstract:

      The Pulang Cu deposit, located in the Gezan ore-concentrated area of the Sanjiang Tethyan belt, is the largest porphyry Cu-Mo polymetallic deposit formed during the Indosinian orogeny. The north section of the first mining area is a key resource area of the deposit, but its metallogenic characteristics are quite different from those of the first mining area. It remains unclear whether the first mining area and its northern section are products of the same genetic magmatic activity, limiting the in-depth exploration of its relationship with the mineralization of the first mining area and the general understanding of the metallogenic law. In this study, we present new Re-Os geochronology of molybdenite from this section, aiming to provide basic geological data for further exploration and evaluation of metallogenic regularity and resource prospects in the northern region, and to guide further exploration efforts. The molybdenite Re-Os data yield a weighted mean model age of (202.35±0.84)Ma and an isochron age of (200.7±9.2)Ma, slightly younger than the orebody in the first mining area. The mineralization in the No. Ⅰ composite intrusion in the south zone of Pulang spanned a long period (ca. 20 Myr), possibly related to multiple pulses of ore fluids, suggesting a high potential for undiscovered resources in the north section of the first mining area. The Re content of molybdenite ranges from 1.50×10-4 to 4.45×10-4, with an average of 2.64×10-4, indicating a mantle-derived ore-forming materials. The tectonic setting for mineralization was the flat subduction of the Ganzi-Litang ocean beneath the Yidun arc in the southern Gezan area, which triggered partial melting of the oceanic crust and generated voluminous adakitic magmas and associated ore fluids.

    • 图  1   区域大地构造位置(a)、义敦岛弧构造地质简图(b)及格咱地区地质简图(c,张少颖等,2020

      Figure  1.   Tectonic outline of the study area (a), tectonic framework of the Yidun arc (b) and geologic sketch map of the Gezan area (c, after Zhang et al., 2020)

      图  2   普朗铜矿南矿段地质图

      Figure  2.   Geological map of the southern ore block of Pulang copper deposit

      图  3   普朗铜矿22线(左)、28线(右)地质剖面图

      Figure  3.   Geological sections of Line-22 (left) and Line-28 (right) of Pulang copper deposit

      图  4   普朗铜矿首采区北段手标本特征

      a. 细脉浸染状构造;b. 浸染状构造;c. 脉状构造;d. 斑杂状构造。Mol—辉钼矿,Ccp—黄铜矿,Py—黄铁矿,Po—磁黄铁矿,Qtz—石英,Bt—黑云母

      Figure  4.   Characteristics of ore hand specimen in the north section of the first mining area of Pulang copper deposit

      图  5   普朗铜矿首采区北段矿石结构特征

      a. 片状辉钼矿不均匀分布于黄铁矿、黄铜矿粒间;b. 片状辉钼矿;c. 他形粒状黄铜矿不均匀分布于黄铁矿粒间;d. 半自形—自形粒状黄铁矿、他形粒状黄铜矿不均匀分布;e. 他形粒状黝铜矿不均匀分布于磁黄铁矿、黄铜矿粒间;f. 半自形粒状毒砂不均匀分布于黄铁矿粒间;g. 他形粒状闪锌矿、磁黄铁矿不均匀分布于黄铜矿粒间;h. 他形粒状方铅矿;i. 褐铁矿不均匀交代黄铁矿、黄铜矿。Mo—辉钼矿,Ccp—黄铜矿,Py—黄铁矿,Po—磁黄铁矿,Thr—黝铜矿,Apy—毒砂,Sp—闪锌矿,Gn—方铅矿,Lm—褐铁矿

      Figure  5.   Ore textures of the northern section of the first mining area of Pulang copper deposit

      图  6   普朗铜矿首采区北段辉钼矿Re-Os等时线年龄(a)和加权平均模式年龄(b)

      Figure  6.   Re-Os isochron age (a) and weighted average model age (b) of molybdenite in the north section of the first mining area of Pulang copper deposit

      图  7   普朗铜矿成矿动力学背景(修改自Cai et al.,2023

      Figure  7.   Metallogenic dynamic background of Pulang copper deposit (modified from Cai et al.,2023)

      表  1   普朗KT1主矿体研究区与首采区控矿因素特征对比

      Table  1   Comparison of ore-controlling factors between the research area and the first mining area of Pulang KT1 main ore body

      位置 首采区(7—20线) 研究区(20—44线)
      控矿岩
      性特征
      成矿岩性 石英二长斑岩,花岗闪长斑岩,少量粗粒石英闪长玢岩 石英二长斑岩为主,少量粗粒石英闪长玢岩
      赋矿位置 岩体内、局部角岩 岩体内,局部角岩
      控矿蚀
      变分带
      特征
      蚀变分带 从内到外依次为:钾硅化带→(黄铁)绢英
      岩化带→青磐岩化带(泥化叠加于后两种蚀变之上)
      从内到外依次为:钾硅化带(规模小)→
      (黄铁)绢英岩化带(部分叠加在钾硅化带
      上)→青磐岩化带(泥化叠加于它们之上)
      蚀变分带特征矿物 钾硅化带:石英+钾长石+黑云母+钠长石;
      (黄铁)绢英岩化带:绢云母+石英;
      青磐岩化带:绿泥石+绿帘石+方解石;
      泥化带:伊利石+高岭土等黏土矿物
      钾硅化带:石英+钾长石±黑云母或石英(脉)+钾长石或石英(脉)+黑(金)云母;
      (黄铁)绢英岩化带:绢云母+石英(脉);
      青磐岩化带:绿泥石+绿帘石+方解石;
      泥化:高岭土+蒙脱石±绿脱石±地开石等
      蚀变分带金属特征矿物 钾硅化带:黄铜矿+辉钼矿+黄铁矿(少);
      (黄铁)绢英岩化带:黄铜矿+黄铁矿+辉钼矿+磁黄铁矿;
      青磐岩化带:黄铁矿+磁黄铁矿+黄铜矿;
      钾硅化带:黄铜矿+黄铁矿±辉钼矿(少);
      绢英岩化带:黄铜矿+黄铁矿+辉钼矿+磁黄
      铁矿;
      青磐岩化带:黄铁矿±磁黄铁矿±黄铜矿
      与矿体有关的蚀变 钾硅化带、绢英岩带 绢英岩化带为主,少量钾硅化带
      构造控
      矿特征
      区域黑水塘断裂与全干力达断裂、次级构造破碎带、节理裂隙及微裂隙系统 区域黑水塘断裂与全干力达断裂、次级构造破碎带、节理裂隙及微裂隙系统
      下载: 导出CSV

      表  2   普朗铜矿首采区北段辉钼矿Re-Os同位素测试结果

      Table  2   Re-Os isotope test results of molybdenite in the north section of the first mining area of Pulang copper deposit

      样号187Re/10-6187Os/10-9Re/10-6模式年龄/Ma
      测量值1σ测量值1σ测量值1σ计算值1σ
      PLBKTD-293.701.553193.1149.682.48204.21.9
      PLBKTD-5128.143.434334.6204.705.48202.52.1
      PLBKTD-6234.914.337866.7375.266.92200.51.7
      PLBKTD-1144.151.604902.3230.272.55203.72.0
      PLBKTD-8110.941.213751.2177.231.93202.30.5
      PLBKTD-7278.494.929388.9444.877.85201.82.9
      下载: 导出CSV

      表  3   普朗南部侵入岩、蚀变和矿物地质年代学统计表

      Table  3   Statistical table of intrusive rocks, alteration, and mineral geochronology in southern Pulang

      样品性质 矿物 测试方法 年龄/Ma 数据来源
      粗粒石英闪长斑岩 锆石 U-Pb(ID-TIMS) 221.0 ± 1.0 庞振山等,2009; Pang et al.,2014
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 224.2 ± 1.7 Wang et al.,2011
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 217.9 ± 1.8 Wang et al.,2011
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 220.8 ± 4.1 刘学龙等,2012
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 220.5 ± 3.2 刘学龙和李文昌,2013
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 219.6 ± 3.5 刘学龙等,2013
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 211.8 ± 1.9 Chen et al.,2014
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 217.2 ± 1.4 Chen et al.,2014
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 215.3 ± 1.4 Chen et al.,2014
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 225.9 ± 3.7 Yang et al.,2018
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 215.2 ± 1.2 Leng et al.,2018a
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 215.2 ± 1.7 Leng et al.,2018a
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 213.5 ± 1.9 Leng et al.,2018a
      粗粒石英闪长斑岩 锆石 U-Pb(LA-ICP-MS) 216.5 ± 1.5 Cao et al.,2019
      石英二长斑岩 锆石 U-Pb(SHRIMP) 228.0 ± 3.0 王守旭等,2008
      石英二长斑岩 锆石 U-Pb(SHRIMP) 226.3 ± 2.8 王守旭等,2008
      石英二长斑岩 锆石 U-Pb(SHRIMP) 226.0 ± 3.0 王守旭等,2008
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 214.8 ± 3.5 刘学龙等,2012
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.9 ± 3.1 刘学龙和李文昌,2013
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 214.8 ± 1.4 刘学龙和李文昌,2013
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 212.8 ± 1.9 刘学龙等,2013
      石英二长斑岩 锆石 U-Pb(ID-TIMS) 211.8 ± 0.5 庞振山等,2009; Pang et al.,2014
      石英二长斑岩 锆石 U-Pb(SIMS) 215.0 ± 1.3 Kong et al.,2016
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 217.0 ± 1.3 Leng et al.,2018a
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 216.4 ± 1.4 Leng et al.,2018a
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 217.6 ± 1.3 Leng et al.,2018a
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 217.1 ± 1.8 Leng et al.,2018b
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 216.0 ± 1.2 Leng et al.,2018b
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.1 ± 1.3 Leng et al.,2018b
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 211.6 ± 3.1 Wang et al.,2018b
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.4 ± 1.8 Yang et al.,2018
      石英二长斑岩 锆石 U-Pb(LA-ICP-MS) 215.5 ± 1.4 Cao et al.,2019
      闪长斑岩 锆石 U-Pb(LA-ICP-MS) 218.0 ± 0.8 Cao et al.,2019
      蚀变 黑云母 40Ar/39Ar 216.0 ± 1.0 曾普胜等,2006; Li et al.,2011
      蚀变 黑云母 40Ar/39Ar 214.6 ± 0.9 曾普胜等,2006; Li et al.,2011
      矿化 辉钼矿 Re-Os(ID-ICP-MS) 216.3 ± 3.5~211.4 ± 3.6 曾普胜等,2006; Li et al.,2011
      矿化 辉钼矿 Re-Os(ID-ICP-MS) 219.7 ± 3.4~218.0 ± 3.4 曹殿华,2007
      矿化 辉钼矿 Re-Os(ID-NTIMS) 216.54 ± 0.87~216.13 ± 0.86 Cao et al.,2019
      矿化 辉钼矿 Re-Os(ID-ICP-MS) 200.7 ± 9.2~202.35 ± 0.84 本次研究
      下载: 导出CSV
    • [1]

      Barra F,Deditius A,Reich M,et al.,2017. Dissecting the Re-Os molybdenite geochronometer [J]. Scientific Reports,7(1):16054.

      [2]

      Cai X,Zhang X,Yang Z,et al.,2023. Magma mixing affected the Late Triassic porphyry mineralization in the Yidun Arc in SW China[J]. Ore Geology Reviews,152:105225. DOI: 10.1016/j.oregeorev.2022.105225

      [3] 曹殿华,王安建,黄玉凤,等,2009. 中甸弧雪鸡坪斑岩铜矿含矿斑岩锆石SHRIMP U-Pb年代学及Hf同位素组成[J]. 地质学报,83(10):1430 − 1435. DOI: 10.3321/j.issn:0001-5717.2009.10.007

      Cao D H,Wang A J,Huang Y F,et al.,2009. SHRIMP geochronology and Hf isotope composition of zircons from Xuejiping porphyry copper deposit,Yunnan Province[J]. Acta Geologica Sinica,83(10):1430 − 1435 (in Chinese with English abstract). DOI: 10.3321/j.issn:0001-5717.2009.10.007

      [4] 曹殿华,2007. 中甸地区斑岩铜矿成矿模式与综合勘查评价技术研究[D]. 北京:中国地质科学院.

      Cao D H,2008. Study on metallogenic model and comprehensive exploration evaluation technology of porphyry copper deposits in Zhongdian area[D]. Beijing:Chinese Academy of Geological Sciences (in Chinese with English abstract).

      [5]

      Cao K,Yang Z M,Mavrogenes J,et al.,2019. Geology and genesis of the giant Pulang porphyry Cu-Au district,Yunnan,Southwest China[J]. Economic Geology,114(2):275 − 301. DOI: 10.5382/econgeo.2019.4631

      [6]

      Cao K,Yang Z M,White N C,et al.,2022. Generation of the giant porphyry Cu-Au deposit by repeated recharge of mafic magmas at Pulang in Eastern Tibet[J]. Economic Geology,117(1):57 − 90. DOI: 10.5382/econgeo.4860

      [7] 曹晓民,董涛,余海军,等,2022. 滇西北香格里拉市格咱铜多金属矿集区地质演化与成矿作用[J]. 沉积与特提斯地质,42(1):50 − 61.

      Cao X M,Dong T,Yu H J,et al.,2022. Geological evolution and metallogenesis of Gezan copper polymetallic ore concentration area in Shangri-La City,Northwestern Yunnan[J]. Sedimentary Geology and Tethyan Geology,42(1):50 − 61 (in Chinese with English abstract).

      [8]

      Chen J F,Sheng D,Shao Y J,et al.,2019. Silurian S-type granite-related W-(Mo) mineralization in the Nanling range,South China:A case study of the Pingtan W-(Mo) deposit[J]. Ore Geology Reviews,107:186 − 200. DOI: 10.1016/j.oregeorev.2019.02.020

      [9]

      Chen J L,Xu J F,Ren J B,et al.,2014. Geochronology and geochemical characteristics of late Triassic porphyritic rocks from the Zhongdian arc,Eastern Tibet,and their tectonic and metallogenic implications[J]. Gondwana Research,26(2):492 − 504. DOI: 10.1016/j.gr.2013.07.022

      [10] 陈奇,王长明,祝佳萱,等,2022. 斑岩矿床成矿时间尺度的研究进展:以藏东玉龙斑岩铜(钼)矿床为例[J]. 岩石学报,38(1):109 − 123. DOI: 10.18654/1000-0569/2022.01.08

      Chen Q,Wang C M,Zhu J X,et al.,2022. Advances in research of the time scales of porphyry deposits:A case study of the Yulong porphyry Cu-Mo deposit in the Eastern Tibet[J]. Acta Petrologica Sinica,38(1):109 − 123 (in Chinese with English abstract). DOI: 10.18654/1000-0569/2022.01.08

      [11] 邓军,王庆飞,李龚健,2016. 复合造山和复合成矿系统:三江特提斯例析[J]. 岩石学报,32(8):2225 − 2247.

      Deng J,Wang Q F,Li G J,2016. Superimposed orogeny and composite metallogenic system:Case study from the Sanjiang Tethyan belt,SW China[J]. Acta Petrologica Sinica,32(8):2225 − 2247 (in Chinese with English abstract).

      [12] 董桥峰,陈明勇,沈啟武,等,2021. 滇西北普朗铜矿南矿段20线以北蚀变矿物分布特征及组合分带模式[J]. 矿产与地质,35(5):855 − 866.

      Dong Q F,Chen M Y,Shen Q W,et al.,2021. Alteration mineral distribution characteristics and combination zonation model in the north of prospecting line No. 20 at the south section of Pulang copper deposit in Northwest Yunnan[J]. Mineral Resources and Geology,35(5):855 − 866 (in Chinese with English abstract).

      [13] 范玉华,李文昌,2006. 云南普朗斑岩铜矿床地质特征[J]. 中国地质,33(2):352 − 362.

      Fan Y H,Li W C,2006. Geological characteristics of the Pulang porphyry copper deposit,Yunnan[J]. Geology in China,33(2):352 − 362 (in Chinese with English abstract).

      [14]

      Hogmalm K J,Dahlgren I,Fridolfsson I,et al.,2019. First in situ Re-Os dating of molybdenite by LA-ICP-MS/MS[J]. Mineralium Deposita,54(6):821 − 828. DOI: 10.1007/s00126-019-00889-1

      [15] 侯增谦,杨岳清,曲晓明,等,2004. 三江地区义敦岛弧造山带演化和成矿系统[J]. 地质学报,78(1):109 − 120. DOI: 10.3321/j.issn:0001-5717.2004.01.013

      Hou Z Q,Yang Y Q,Qu X M,et al.,2004. Evolution and metallogenesis of the Yidun island arc in the Sanjiang region[J]. Acta Geologica Sinica,78(1):109 − 120 (in Chinese with English abstract). DOI: 10.3321/j.issn:0001-5717.2004.01.013

      [16]

      Huang X W,Qi L,Gao J F,et al.,2021. Re–Os dating of molybdenite via improved alkaline fusion [J]. Journal of Analytical Atomic Spectrometry,36(1),64 − 69.

      [17]

      Kong D X,Xu J F,Chen J L,2016. Oxygen isotope and trace element geochemistry of zircons from porphyry copper system:Implications for Late Triassic metallogenesis within the Yidun terrane,Southeastern Tibetan Plateau [J]. Chemical Geology,441:148 − 161.

      [18]

      Leng C B,Cooke D R,Hou Z Q,et al.,2018a. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating[J]. Economic Geology,113(5):1077 − 1092. DOI: 10.5382/econgeo.2018.4582

      [19]

      Leng C B,Gao J F,Chen W T,et al.,2018b. Platinum-group elements,zircon Hf-O isotopes,and mineralogical constraints on magmatic evolution of the Pulang porphyry Cu-Au system,SW China[J]. Gondwana Research,62:163 − 177. DOI: 10.1016/j.gr.2018.03.001

      [20]

      Leng C B,Huang Q Y,Zhang X C,et al.,2014. Petrogenesis of the Late Triassic volcanic rocks in the Southern Yidun Arc,SW China:Constraints from the geochronology,geochemistry,and Sr–Nd–Pb–Hf isotopes[J]. Lithos,190 − 191:363 − 382. DOI: 10.1016/j.lithos.2013.12.018

      [21]

      Leng C B,Zhang X C,Hu R,et al.,2012. Zircon U–Pb and molybdenite Re–Os geochronology and Sr–Nd–Pb–Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian,Northwest Yunnan,China[J]. Journal of Asian Earth Sciences,60:31 − 48. DOI: 10.1016/j.jseaes.2012.07.019

      [22] 冷成彪,张兴春,王守旭,等,2008. 滇西北中甸松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义[J]. 大地构造与成矿学,32(1):124 − 130. DOI: 10.3969/j.issn.1001-1552.2008.01.016

      Leng C B,Zhang X C,Wang S X,et al.,2008. SHRIMP zircon U-Pb dating of the Songnuo ore-hosted porphyry,Zhongdian,Northwest Yunnan,China and its geological implication[J]. Geotectonica Et Metallogenia,32(1):124 − 130 (in Chinese with English abstract). DOI: 10.3969/j.issn.1001-1552.2008.01.016

      [23]

      Li W C,Zeng P S,Hou Z Q,et al.,2011. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province,Southwest China[J]. Economic Geology,106(1):79 − 92. DOI: 10.2113/econgeo.106.1.79

      [24]

      Li W C,Zhang X F,Yu H J,et al.,2022. Geology and mineralization of the Pulang superlarge porphyry copper deposit (5.11 Mt) in Shangri-la,Yunnan Province,China:A review[J]. China Geology,5:1 − 34.

      [25] 李欣尉,李超,周利敏,等,2023. 富碳质地质样品Re-Os同位素体系研究进展[J]. 岩矿测试,42(2):221 − 238.

      Li X W,Li C,Zhou L,et al.,2023. A review of research progress on Re-Os isotopic system of carbon-enriched geological samples[J]. Rock and Mineral Analysis,42(2),221 − 238 (in Chinese with English abstract).

      [26]

      Li Y,Selby D,Condon D,et al.,2017. Cyclic magmatic-hydrothermal evolution in porphyry systems:High-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit[J]. Economic Geology,112(6):1419 − 1440. DOI: 10.5382/econgeo.2017.4515

      [27] 刘学龙,李文昌,尹光侯,等,2012. 云南省格咱岛弧印支期岩浆演化及普朗斑岩型铜矿成矿作用[J]. 地质学报,86(12):1933 − 1945. DOI: 10.3969/j.issn.0001-5717.2012.12.006

      Liu X L,Li W C,Yin G H,et al.,2012. Magmatic evolution and porphyry Cu mineralization of the Gezan island arc in Yunnan Province during the Indosinian period[J]. Acta Geologica Sinica,86(12):1933 − 1945 (in Chinese with English abstract). DOI: 10.3969/j.issn.0001-5717.2012.12.006

      [28] 刘学龙,李文昌,尹光侯,等,2013. 云南格咱岛弧普朗斑岩型铜矿年代学、岩石矿物学及地球化学研究[J]. 岩石学报,29(9):3049 − 3064.

      Liu X L,Li W C,Yin G H,et al.,2013. The geochronology,mineralogy and geochemistry study of the Pulang porphyry copper deposits in Geza arc of Yunnan Province[J]. Acta Petrologica Sinica,29(9):3049 − 3064 (in Chinese with English abstract).

      [29] 刘学龙,李文昌,2013. 云南格咱岛弧印支期岩浆作用的锆石年龄和铪同位素证据[J]. 地学前缘,20(5):57 − 74.

      Liu X L,Li W C,2013. The Indo-Chinese epoch magmatism in Gega arc of Yunnan:Evidences from zircon U-Pb dating and Hf isotopic composition[J]. Earth Science Frontiers,20(5):57 − 74 (in Chinese with English abstract).

      [30]

      Ludwig K,2003.Isoplot 3.0:A geochronological toolkit for microsoft excel [J]. Berkeley Geochronology Center Special Publication,4:1 − 74.

      [31]

      Mao J W,Zhang Z C,Zhang Z H,et al.,1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the Northern Qilian mountains and its geological significance[J]. Geochimica et Cosmochimica Acta,63(11):1815 − 1818.

      [32]

      Moilanen M,Hanski E,Yang S H,2021. Re-Os isotope geochemistry of the Palaeoproterozoic Sakatti Cu-Ni-PGE sulphide deposit in Northern Finland [J]. Ore Geology Reviews,132:104044.

      [33]

      Pang Z S,Du Y S,Cao Y,et al.,2014. Geochemistry and zircon U–Pb geochronology of the Pulang complex,Yunnan Province,China[J]. Journal of Earth System Science,123(4):875 − 885. DOI: 10.1007/s12040-014-0429-9

      [34] 庞振山,杜杨松,王功文,等,2009. 云南普朗复式岩体锆石U-Pb年龄和地球化学特征及其地质意义[J]. 岩石学报,25(1):159 − 165.

      Pang Z S,Du Y S,Wang G W,et al.,2009. Single-grain zircon U-Pb isotopic ages,geochemistry and its implication of the Pulang complex in Yunnan Province,China[J]. Acta Petrologica Sinica,25(1):159 − 165 (in Chinese with English abstract).

      [35]

      Qi L,Gao J F,Meng Y M,2016. Some thoughts on sulfide Re-Os isotope dating [J]. Bulletin of Mineralogy Petrology and Geochemistry,35:432 − 440.

      [36] 覃曼,周瑶琪,刘加召,等,2017. 铼−锇同位素体系定年研究综述[J]. 地质找矿论丛,32(3):421 − 427. DOI: 10.6053/j.issn.1001-1412.2017.03.010

      Qin M,Zhou Y Q,Liu J Z,et al.,2017. Review of Re-Os geochronology[J]. Contributions to geology and mineral resources research,32(3):421 − 427 (in Chinese with English abstract). DOI: 10.6053/j.issn.1001-1412.2017.03.010

      [37]

      Sai Y M,Jin K,Luo M,et al.,2020. Recent progress on the research of Re–Os geochronology and Re–Os elemental and isotopic systematics in petroleum systems[J]. Journal of Natural Gas Geoscience,5(6):355 − 365. DOI: 10.1016/j.jnggs.2020.11.003

      [38]

      Shen J,Papanastassiou D,Wasserburg G,1996. Precise Re-Os determinations and systematics of iron meteorites [J]. Geochimica et Cosmochimica Acta,60(15):2887 − 2900.

      [39] 沈啟武,舒华伟,钟志勇,等,2022. 滇西北普朗铜矿20~30线岩体结构面特征分析[J]. 昆明冶金高等专科学校学报,38(1):21 − 26. DOI: 10.3969/j.issn.1009-0479.2022.01.004

      Shen Q W,Shu H W,Zhong Z Y,et al.,2022. Analysis of characteristics of rock mass structural plane at Line 20~30 of Pulang copper mine in Northwestern Yunnan[J]. Journal of Kunming Metallurgy College,38(1):21 − 26 (in Chinese with English abstract). DOI: 10.3969/j.issn.1009-0479.2022.01.004

      [40]

      Sillitoe R H,2010. Porphyry copper systems[J]. Economic Geology,105(1):3 − 41. DOI: 10.2113/gsecongeo.105.1.3

      [41]

      Sillitoe R H,Mortensen J K,2010. Longevity of porphyry copper formation at Quellaveco,Peru[J]. EconomicGeology,105 (6) :1157 − 1162.

      [42]

      Stein H J,Markey R J,Morgan J W,et al.,2001. The remarkable Re–Os chronometer in molybdenite:How and why it works[J]. Terra Nova,13(6):479 − 486. DOI: 10.1046/j.1365-3121.2001.00395.x

      [43] 谭笑林,胡煜昭,周亮,等,2022. 高演化地区古油藏Re-Os年代学与REE特征分析——以南盘江盆地板街古油藏为例[J]. 石油实验地质,44(5):877 − 886,895.

      Tan X L,Hu Y Z,Zhou L,et al.,2022. Re-Os geochronology and REE characteristics of ancient oil reservoirs in highly evolved areas:A case study of the Banjie ancient oil reservoir in the Nanpanjiang Basin [J]. Petroleum Experimental Geology,44(5),877 − 886 (in Chinese with English abstract).

      [44]

      Wang B Q,Wang W,Chen W T,et al.,2013. Constraints of detrital zircon U–Pb ages and Hf isotopes on the provenance of the Triassic Yidun group and tectonic evolution of the Yidun terrane,Eastern Tibet[J]. Sedimentary Geology,289:74 − 98. DOI: 10.1016/j.sedgeo.2013.02.005

      [45]

      Wang B Q,Zhou M F,Li J W,et al.,2011. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-la Region,Yidun Terrane,Eastern Tibetan Plateau:Adakitic magmatism and porphyry copper mineralization[J]. Lithos,127(1):24 − 38.

      [46]

      Wang P,Dong G,Zhao G,et al.,2018b. Petrogenesis of the Pulang porphyry complex,Southwestern China:Implications for porphyry copper metallogenesis and subduction of the Paleo-Tethys oceanic lithosphere[J]. Lithos,304−307:280 − 297. DOI: 10.1016/j.lithos.2018.02.009

      [47] 王守旭,张兴春,冷成彪,等,2008. 滇西北普朗斑岩铜矿锆石离子探针U-Pb年龄:成矿时限及地质意义[J]. 岩石学报,24(10):2313 − 2321.

      Wang S X,Zhang X C,Leng C B,et al.,2008. Zircon SHRIMP U-Pb dating of the Pulang porphyry copper deposit,northwestern Yunnan,China:The ore-forming time limitation and geological significance[J]. Acta Petrologica Sinica,24(10):2313 − 2321 (in Chinese with English abstract).

      [48]

      Wang Y,Zhang F,Liu J,et al.,2018a. Ore genesis and hydrothermal evolution of the Donggebi porphyry Mo deposit,Xinjiang,Northwest China:Evidence from isotopes (C,H,O,S,Pb),fluid inclusions,and molybdenite Re-Os dating[J]. Economic Geology,113:463 − 488. DOI: 10.5382/econgeo.2018.4558

      [49] 许晓杰,李超,王庆飞,等,2022. 右江盆地北山MVT铅锌矿床黄铁矿Re-Os同位素体系及其对定年的启示[J]. 岩石学报,38(6):1727 − 1740. DOI: 10.18654/1000-0569/2022.06.12

      Xu X J,Li C,Wang Q F,et al.,2022. Pyrite Re-Os isotope system of the Beishan MVT Pb-Zn depsoit in the Youjiang Basin and its significance for dating[J]. Acta Petrologica Sinica,38(6):1727 − 1740 (in Chinese with English abstract). DOI: 10.18654/1000-0569/2022.06.12

      [50]

      Yang L Q,He W Y,Gao X,et al.,2018. Mesozoic multiple magmatism and porphyry–skarn Cu–polymetallic systems of the Yidun Terrane,Eastern Tethys:Implications for subduction and transtension-related metallogeny[J]. Gondwana Research,62:144 − 162. DOI: 10.1016/j.gr.2018.02.009

      [51] 尹一凡,漆亮,周波,等,2022. 辉钼矿Re-Os同位素定年前处理方法改进[J]. 矿物岩石地球化学通报,41(4):849 − 853.

      Yin Y F,Qi L,Zhou B,et al.,2022. Improvement of pretreatment method for Re-Os isotopic dating of molybdenite[J]. Bulletin of Mineralogy,Petrology and Geochemistry,41(4),849 − 853 (in Chinese with English abstract).

      [52] 曾普胜,侯增谦,李丽辉,等,2004. 滇西北普朗斑岩铜矿床成矿时代及其意义[J]. 地质通报,23(11):1127 − 1131. DOI: 10.3969/j.issn.1671-2552.2004.11.013

      Zeng P S,Hou Z Q,Li L H,et al.,2004. Age of the Pulang porphyry copper deposit in NW Yunnan and its geological significance[J]. Geological Bulletin of China,23(11):1127 − 1131 (in Chinese with English abstract). DOI: 10.3969/j.issn.1671-2552.2004.11.013

      [53] 曾普胜,李文昌,王海平,等,2006. 云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征 [J]. 岩石学报,22(4):989 − 1000.

      Zeng P S,Li W C,Wang H P,et al.,2006. The Indosinian Pulang superlarge porphyry copper deposit in Yunnan,China:Petrology and chronology [J]. Acta Petrologica Sinica,22(4),989 − 1000 (in Chinese with English abstract).

      [54] 张少颖,和文言,高雪,等,2020. 斑岩铜矿床成矿流体演化:中甸普朗铜矿床蚀变矿物学与热力学模拟[J]. 岩石学报,36(5):1611 − 1626.

      Zhang S Y,He W Y,Gao X,et al.,2020. Ore-forming fluids evolution of the porphyry Cu deposits:Alteration mineralogy and thermodynamic modeling of the Pulang Cu deposit,Zhongdian district[J]. Acta Petrologica Sinica,36(5),1611 − 1626 (in Chinese with English abstract).

    图(7)  /  表(3)
    计量
    • 文章访问数:  18
    • HTML全文浏览量:  1
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-10-24
    • 修回日期:  2024-02-24
    • 录用日期:  2024-04-14
    • 刊出日期:  2025-03-19

    目录

      /

      返回文章
      返回