The depositional environment and manganese mineralization mechanism of the ore-bearing rock series from the No. Ⅲ ore body of the early Cambrian Maojiashan manganese deposit, Longmenshan tectonic belt
-
摘要:
针对龙门山构造带早寒武世锰矿床锰的富集沉淀机理不明这一科学问题,本文以该构造带毛家山锰矿床Ⅲ号矿体为研究对象,在详细的野外地质调查和室内光薄片鉴定的基础上,对含矿岩系开展了系统的总有机碳(TOC)和元素地球化学测试,初步探讨了锰的来源、沉积环境与富集机制。研究表明:(1)毛家山锰矿床Ⅲ号矿体含矿岩系为下寒武统邱家河组五段,主要由锰矿层(Ⅲ号锰矿体)、黄铁矿层、含锰硅质白云岩、碳泥质板岩、硅质岩和白云岩组成。锰矿层由厘米至毫米级多旋回富锰硫化物层和富锰碳酸盐层组成,矿石矿物主要为硫锰矿和锰白云石,脉石矿物主要为草莓状黄铁矿和石英,含少量有机质。(2)含矿岩系CIA值主要介于65~85,指示中等陆源风化条件,有利于陆源锰的迁出,但Al2O3与MnO之间大致呈现负相关关系,推测陆源风化很可能并非锰的主要来源;在(Cu+Co+Ni)×10–Fe–Mn、(Zr+Y+Ce)×100–(Cu+Ni)×15–(Fe+Mn)/4、Ce/Ce*–(Y/Ho)PAAS、Ce/Ce*–Nd和Fe/Ti–Al/(Al+Fe+Mn)系列判别图解中,含矿岩系各岩/矿石样品投点主要落入热液成因区或水成–热液混合区,指示锰很可能来自海底热液输入。(3)含矿岩系草莓状黄铁矿粒径、EFMo/EFU比值、V/Cr比值、V/(V+Ni)比值等氧化还原指标指示其形成于次氧化–缺氧–硫化波动变化的底层水环境;古海洋生产力指标P和Cd指示较高的古海洋生产力条件;Mo–TOC图解和Cd–Mo图解则显示,含矿岩系主体形成于弱局限上升洋流环境。(4)Mn的富集沉淀机制很可能受微生物诱导成矿作用和细菌还原硫酸盐作用(BSR)综合控制。
Abstract:Addressing the scientific question of the unclear mechanism of manganese enrichment and precipitation in the early Cambrian manganese deposits of the Longmenshan tectonic belt, this paper focuses on the No. Ⅲ ore body of the Maojiashan manganese deposit in this belt as the research object. Based on detailed field geological surveys and thin-section identification, a systematic total organic carbon (TOC) and elemental geochemical test was conducted to preliminarily explore the source of manganese, depositional environment, and enrichment mechanism. The study shows: (1) The ore-bearing rock series from the No. Ⅲ ore body of the Maojiashan manganese deposit belongs to the fifth member of the lower Cambrian Qiujiahe Formation, primarily composed of manganese ore layers (No. Ⅲ manganese ore body), pyrite layers, manganese-bearing siliceous dolostone, carbonaceous mudstone, siliceous rock, and dolostone. The manganese ore layer is composed of centimeter- to millimeter-scale multi-cycle manganese-rich sulfide layers and manganese-rich carbonate layers. The main ore minerals are alabandite and kutnahorite, and the main gangue minerals are pyrite framboids and quartz, with a small amount of organic matter. (2) The CIA value of the ore-bearing rock series mainly ranges from 65 to 85, indicating moderate continental weathering conditions, favorable for the migration of terrigenous manganese. However, there is a negative correlation between Al2O3 and MnO, suggesting that continental weathering is likely not the main source of manganese. In the (Cu+Co+Ni)×10–Fe–Mn, (Zr+Y+Ce)×100–(Cu+Ni)×15–(Fe+Mn)/4, Ce/Ce* vs. (Y/Ho)PAAS, Ce/Ce* vs. Nd, and Fe/Ti vs. Al/(Al+Fe+Mn) discriminant diagrams, the data pertaining to rocks and ores of the ore-bearing rock series are mainly plotted on the hydrothermal origin area or the aqueous-hydrothermal mixed area, indicating that manganese is likely derived from submarine hydrothermal input. (3) The size of pyrite framboids, as well as redox indicators such as the EFMo/EFU ratio, V/Cr ratio, and V/(V+Ni) ratio, indicate that the ore-bearing rock series formed in a bottom water environment with fluctuating suboxic-anoxic-sulfidic conditions; paleoceanic productivity indicators P and Cd indicate high paleoproductivity; TOC vs. Mo and Mo vs. Cd diagrams show that the ore-bearing rock series mainly formed in a weakly restricted upwelling environment. (4) The mechanism of manganese enrichment and precipitation is likely controlled by microbial-induced mineralization and bacterial sulfate reduction (BSR).
-
0. 引言
震旦纪—寒武纪之交是地质发展史中的一个重要时期,在此期间不仅发生了冈瓦纳大陆开始聚合(Yao et al.,2014; Yang et al.,2020)、海洋氧化(Lyons et al.,2014; Stolper and Keller,2018)、生命大爆发(Zhang et al.,2021a; Wood et al.,2019)等一系列全球性重大地质事件,同时也是我国沉积型磷矿(Yang et al.,2022; 王畅等,2024)、锰矿(Hein et al.,1999; 罗绍强等,2024)、Ni-Mo-V-PGE-Au多金属矿(Pagès et al.,2019; Zhang et al.,2022)以及重晶石–毒重石矿(Xu et al.,2016; Han et al.,2022)的重要成矿期,备受国内外学者关注。
近年来,在扬子地台西缘的龙门山构造带,早寒武世锰矿勘查取得重大突破,相继发现和探明了以张家山(张律和颜玲,2015)、观音梁子(郑辉,2016)、杏子树(李贤凯和罗润,2018)、中坝(纪冬平等,2021,2022)、箭竹垭(白新会等,2022)、马公(许骏等,2022)、田梁上(罗绍强等,2024)等为代表的一系列中型锰矿床,并向北东延伸至陕西汉中天台山锰矿(杨绍许和赵详庭,1996;Hein et al.,1999;钱赵伟等,2022),显示出巨大的找矿前景(图1 A-B)。
图A:1—克拉通–造山带边界断裂;2—缝合带主要断裂;3—地层单元边界断裂及次级断裂。图B:1—南华系—震旦系;2—志留系茂县群;3—志留系;4—奥陶系;5—寒武系;6—新元古界火山岩;7—断层;8—边界线;9—锰矿床;10—磷矿床Figure 1. Geotectonic location of the Longmenshan tectonic belt (A), regional geological and mineral resources of Longmenshan tectonic belt (B), early Cambrian lithofacies paleogeography of Longmenshan tectonic belt (C, modified from Ji et al., 2022; Yang et al., 2016)现有资料显示,龙门山构造带早寒武世锰矿具有以下特点:(1)工业矿体赋存于邱家河组(或与之相当层位的牛蹄塘组、塔南坡组)黑色岩系地层中,严格受地层层位的控制呈层状产出,原生矿石纹层状构造发育(罗绍强等,2024)。(2)不同矿床原生矿石矿物存在差异:中坝锰矿以硬锰矿为主,含少量菱锰矿(纪冬平等,2022);张家山、田梁上、马公锰矿床以菱锰矿为主(张律和颜玲,2015;罗绍强等,2024;许骏等,2022);天台山锰矿以锰白云石+菱锰矿为主,含少量硫锰矿(杨绍许和赵详庭,1996;Hein et al.,1999);观音梁子锰矿以菱锰矿+硫锰矿为主(郑辉,2016),箭竹垭锰矿以硫锰矿为主(白新会等,2022)。(3)部分锰矿含伴生元素可供综合利用(如:中坝锰矿伴生Co,纪冬平等,2021)。
相对于找矿勘查的巨大突破,该成矿带中锰矿的成矿机制研究相对薄弱,主要集中在天台山、中坝、田梁上等几个矿床,在成因方面还存在分歧,主要有沉积成因(Hein et al.,1999; 纪冬平等,2021,2022)、沉积变质成因(白新会等,2022)等不同观点,对于陆源风化、海底热液活动、氧化还原条件、古生产力条件等关键锰成矿要素亦缺乏系统探索。本文在前人研究基础上,以龙门山构造带早寒武世毛家山锰矿床Ⅲ号矿体为剖析对象,通过系统的地质–地球化学分析,反演含矿岩系沉积环境,探讨锰的富集沉淀机制,为寻找区域矿床成矿规律提供支撑。
1. 区域地质背景
毛家山锰矿床位于扬子地块西北缘后龙门山构造带北段,其北部为碧口地块,东部为前陆褶皱带,南部为前龙门山褶皱带,西部与松潘–甘孜造山带相邻。区域地层由基底岩系和沉积盖层组成,其中,基底岩系包括新元古代通木梁群和刘家坪群浅变质火山岩及侵入其中的花岗岩体(裴先治等,2009;李佐臣等,2013);沉积盖层由新元古代和早古生代沉积地层组成,包括下震旦统木座组(Z1m),上震旦统蜈蚣口组(Z2w)、水晶组(Z2s)和下寒武统邱家河组(∈1q)、油房组(∈1y)。区域构造主要包括近NE—SW向的青川–阳平关、北川–映秀、安县–都江堰、马角坝4条大断裂及NW—SE向次级断裂,区域岩浆岩主要为晋宁期花岗岩(图1 A-B)(李佐臣,2009)。
下寒武统邱家河组(∈1q)是该区重要的含锰地层,观音梁子、田梁上、箭竹垭等锰矿床均赋存于此,成矿与早寒武世沉积–构造演化关系密切。现有研究显示,早寒武世龙门山构造带为扬子地块与摩天岭古陆(碧口地块)之间的拗陷盆地,受青川–阳平关断裂、北川–映秀断裂等断裂的控制。此时扬子板块为陆表海,整体显示出开阔台地潮坪–浅滩环境;而后龙门山北段则显示为台地边缘陆棚环境,而锰矿床集中产于台地边缘陆棚硅、锰、泥质岩区(图1C;曾良鍷等,1992;杨先光等,2016)。
2. 矿床地质特征
毛家山锰矿床位于四川省青川县城南西216°方向,平距38 km,矿区面积12.63 km2。矿区地层主要有上震旦统水晶组(Z2s),下寒武统邱家河组(∈1q)、油房组(∈1y)以及沿缓坡、沟谷地带分布的第四系(Q),区域内无岩浆岩出露(图2)。受区域构造的影响,矿区地层发生倒转,褶皱与断裂构造发育,褶皱主要为毛家山扬起向斜和北东向排列的复式褶皱;断裂主要为一系列北东—南西向的断裂,包括哪咤垭断层(F1)以及F2、F3两条推测断层。
2.1 含矿岩系
下寒武统邱家河组(∈1q)为毛家山锰矿床的含矿岩系,由浅变质的碳硅质板岩、碳泥质板岩、钙质板岩、硅质岩与白云岩组成,根据岩性组合特征,可分为5个岩性段,锰矿体主要赋存在一段、三段和五段地层中。一段(∈1q1):分布于矿区西部,岩性主要为灰色薄层–中层碳硅质板岩、碳泥质板岩与(硅质)白云岩互层,夹含锰硅质白云岩,该岩性段为Ⅰ1和Ⅰ2号矿体的赋矿层位。二段(∈1q2):主要分布于矿区中西部,F1断层西侧,岩性主要为灰—灰黑色薄层碳硅质板岩与泥质板岩。三段(∈1q3):地表仅在矿区中部少量出露,位于F1断层西侧,深部钻探工程可见,岩性主要为碳硅质板岩与钙质板岩互层,夹含锰硅质白云岩和白云岩透镜体,该岩性段为Ⅱ1和Ⅱ2号矿体的赋矿层位。四段(∈1q4):于F1断层东侧大面积分布,岩性为灰-灰黑色薄层碳硅质板岩、碳泥质板岩及少量粉砂质板岩等。五段(∈1q5):分布于F1断层东侧,矿区东部及南部。岩性主要为灰色薄层状泥质板岩与白云岩、含锰硅质白云岩互层,局部夹硅质岩,该岩性段为Ⅲ号矿体的赋矿层位。
2.2 矿化特征
邱家河组五段(∈1q5)是毛家山锰矿床Ⅲ号矿体含矿岩系(图3),ZK2002钻孔揭露,主要由锰矿层(Ⅲ号锰矿体)(图4A)、黄铁矿层(图4B)、含锰硅质白云岩(图4C)、碳泥质板岩(图4D)、硅质岩和白云岩组成,各岩性在垂向上的变化见图3。锰矿层、黄铁矿层、含锰硅质白云岩特征如下:
图 4 毛家山锰矿床Ⅲ号矿体含矿岩系特征A. 锰矿层(矿体);B. 黄铁矿层;C. 含锰硅质白云岩;D. 碳泥质板岩;E. 矿石硫化物层中发育的草莓状黄铁矿与硫锰矿;F. 矿石碳酸盐层中发育的锰白云石,锰白云石“雾心”显示微生物特征;G. 锰矿石中锰白云石与石英粒间发育有机质;H. 黄铁矿层中发育草莓状黄铁矿。Alb—硫锰矿;Py—黄铁矿;Kut—锰白云石;Qtz—石英;OM—有机质Figure 4. Characteristics of the ore-bearing rock series of the No. Ⅲ manganese ore body, Maojiashan manganese deposit锰矿层(Ⅲ号锰矿体):分布于邱家河组五段(∈1q5)中部,由厘米至毫米级多旋回富锰硫化物层和富锰碳酸盐层组成(图4A)。富锰硫化物层矿石矿物主要为硫锰矿和锰白云石,草莓状黄铁矿发育(图4E-F)。草莓状黄铁矿粒径介于0.79~30 μm,未见过度生长及显著重结晶现象;硫锰矿呈灰色–灰绿色,以他形晶分布在黄铁矿及锰白云石晶粒间,常见硫锰矿包裹草莓状黄铁矿(图4E-F)。锰碳酸盐层主要由锰白云石、石英以及分布其粒间的有机质和少量草莓状黄铁矿组成(图4I)。整体上,矿层品位Mn为8.05%~35.06%。
含锰硅质白云岩:分布于锰矿层两侧,主要由(含锰)白云石、石英、草莓状黄铁矿(粒径介于0.82~43 μm)组成,Mn含量0.77%~4.67%,局部含P(含量最高可达2.67%)、Ba(含量最高可达1.86%)。
黄铁矿层:钻孔中识别出下、中、上三层黄铁矿层(图3),主要由草莓状黄铁矿(粒径为0.83~28 μm)、石英、黏土矿物和少量白云石及有机质组成,偶见硫锰矿(图4J)。此外,中部黄铁矿层含Ba(2.45%~3.00%);上部黄铁矿层含Mn(1.82%~4.93%)、Ba(0.69%~2.10%)。
3. 测试分析方法与测试结果
3.1 测试分析与数据处理方法
本次研究样品全部采自毛家山锰矿床ZK2002钻孔。分析测试前,先将样品磨制成探针片,通过光学显微镜观察,挑选代表性样品进行总有机碳(TOC)(15件)与元素地球化学(30件)分析测试。
总有机碳(TOC)含量测定在成都南达微构质检技术服务有限公司完成。先将样品置于马弗炉中,900 ~
1000 ℃灼烧2小时,冷却后放入干燥器中;干燥后将样品磨至0.075 ~0.18 mm选取0.01 ~1.00 g放入瓷坩埚中,加入1∶7的配置的盐酸与蒸馏水溶液,在60 ~80℃的水浴锅中加热2小时,直至样品反应完全;反应结束后使用蒸馏水洗至中性,样品放入瓷坩埚后送入60~80℃烘箱内烘干;最后利用碳硫仪HCS-878S测定有机碳,测定时间范围35~45 s。随机抽取40%样品进行重复测定,测定相对偏差<3.4%。元素地球化学测试工作在南京宏创地质勘查技术服务有限公司完成,其中,常量元素采用电感耦合等离子体光谱仪(ICP-OES)测定,重量法测定烧失量(LOI),测试结果相对误差<3%;微量与稀土元素采用电感耦合等离子体质谱仪(ICP-MS)测定,测试结果精度通常都优于5%。测试分析流程见Su et al.(2024)、Liu et al.(2024)。
获取数据后,常、微量元素采用Al-标准化值(Al-标准化值=元素/Al)去除陆源碎屑输入的影响(Calvert and Pedersen,1993; 程文斌等,2008),并以世界平均页岩(AS)(Li and Schoonmaker,2003)作为标准,计算富集系数[EF元素 = (元素/Al)样品 ÷ (元素/Al)AS],探讨古海洋环境(Brumsack,2006; Turgeon and Brumsack,2006),1<EF元素<3为弱富集,3<EF元素<10为明显富集,EF元素>10为强烈富集。稀土元素利用PAAS进行标准化计算,相关数据引自McLennan(1989),异常计算公式为:Ce/Ce*=3×CeN/(2×LaN+NdN)、Pr/Pr*=2×PrN/(CeN+NdN)、Eu/Eu*=2×EuN/(SmN+GdN)(De Baar et al.,1991; Bau and Dulski,1996)。
3.2 测试结果
总有机碳(TOC)、常量元素、微量元素和稀土元素数测试结果及相关参数见附表1
1 ,重要元素含量与地球化学参数纵向变化见图3。3.2.1 总有机碳(TOC)与常量元素
总有机碳(TOC)分析结果显示,Ⅲ号矿体含矿岩系TOC整体变化于0.37%~5.64%,其中,锰矿石为1.18%~1.78%(n=3),黄铁矿层为0.37%~3.44%(n=5),含锰硅质白云岩为0.84%~1.62%(n=5),碳泥质板岩为2.37%(n=1),硅质岩为5.64%(n=1)。
常量元素分析结果表明,Ⅲ号矿体含矿岩系整体具有高SiO2(含量为23.31%~69.59%),低Na2O(含量为0.02%~3.93%)、K2O(含量为0.11%~4.56%)、TiO2(含量为0.04%~0.83%)的特点。而Al2O3(含量为0.38%~18.29%)、TFe2O3(含量为1.22%~18.85%)、MnO(0.04%~32.47%)、CaO(含量为0.04%~15.87%)、MgO(含量为0.51%~9.02%)、P2O5(含量为0.07%~9.15%)的含量变化范围较大。采用Al标准化计算富集系数,锰矿石、黄铁矿层和含锰硅质白云岩中,元素Si、Fe、Mn、Ca、Mg和P显示显著–强烈富集的特点,EF均值均>3;而元素Ti和K则显示弱富集—弱亏损的特点,EF值介于0.7~3(图5)。
在相关系数图解上,Al2O3与TiO2和K2O呈显著正相关关系(R2分别为0.82和0.93,图6A-B),而与MnO和TFe2O3+MnO则大致呈负相关关系(图6C-D)。此外,Mn/Al与(Ca+Mg)/Al大致呈正相关(R2为0.73,图6E)。
3.2.2 微量元素特征
微量元素测试结果表明,Ⅲ号矿体含锰岩系各岩/矿石中代表陆源输入的元素Rb和Zr,其EF值在0.7~3之间,与世界平均页岩相当;而氧化还原条件敏感的元素V、Cr、Co、Ni、Mo、U和古生产力有关的元素Cd、Ba在含矿岩系中均为显著–强烈富集,且EF均值大多呈现锰矿石→黄铁矿层→含锰硅质白云岩降低的趋势(图5)。需要注意的是,虽然Ba可指示古生产力条件,但Ba的循环受控于生产力水平多发生在中生代之后海洋硫酸根充足的条件下,而早寒武世Ba(重晶石)的沉淀主要受控于海水中Ba2+、有机质和硫酸根的输入(Wei et al.,2021; 卫炜等,2024),在使用时需要慎重。
在相关系数图解上,Al2O3与Rb和Zr呈显著正相关关系(R2分别为0.90和0.74,图6F-G),Ba与Al2O3无明显相关性,与MnO大致呈负相关(图6H-I)。
3.2.3 稀土元素特征
稀土元素测试结果显示,Ⅲ号矿体含矿岩系各岩/矿石的稀土元素组成具有以下特征:
(1)ΣREE+Y变化范围较大(50.51×10-6~
1376.85 ×10-6),其中,锰矿石均值为352.61×10-6、含锰硅质白云岩均值为472.39×10-6、黄铁矿层均值为470.23×10-6、无矿化碳泥质板岩+硅质岩+白云岩均值为247.8×10-6。(2)后太古代页岩(PAAS;McLennan,1989)标准化后,所有样品显示负Ce异常(图7A-D),计算Ce/Ce*比值,锰矿石为0.55~0.68,黄铁矿层为0.47~0.86,含锰硅质白云岩为0.57~0.73,无矿化碳泥质板岩+硅质岩+白云岩为0.72~0.85。在Ce/Ce*–Pr/Pr *图解中(图7E),1件锰矿石、1件黄铁矿层、6件含锰硅质白云岩和2件无矿化碳泥质板岩位于Ⅱa区,指示这些样品的负Ce异常为La正异常所引起,实为无异常;其余样品落入Ⅲb区,指示其负Ce异常并非La正异常所引起,负Ce异常有效(Bau and Dulsk,1996)。
图 7 毛家山锰矿床Ⅲ号矿体含矿岩系各岩/矿石REE+Y的PAAS标准化配分图(A-D)、Ce/Ce*–Pr/Pr *图解(E,据Bau and Dulsk,1996)和Eu/Eu*–Ba/Bd图解(F)图E:I—La、Ce无异常;Ⅱa—La正异常、Ce无异常;Ⅱb—La负异常,Ce无异常;Ⅲa—Ce正异常;Ⅲb—Ce负异常Figure 7. Diagrams of post-Archean Australian Shale (PAAS) normalized REE+Y patterns (A-D), Ce/Ce* vs. Pr/Pr* (E, modified from Bau and Dulsk, 1996), and Eu/Eu*–Ba/Bd of the rocks and ores from the ore-bearing rock series of the No. Ⅲ ore body, Maojiashan manganese deposit (F)(3)所有样品的Eu/Eu*比值整体介于1.12×10-6~2.62×10-6,正Eu异常明显(图7A-D)。由于Eu/Eu*比值与Ba/Nd比值存在显著正相关关系,指示样品中的正Eu异常为ICP-MS测试过程中Ba对Eu信号的干扰所致(Xin et al.,2015),不能用于解释古海洋环境。
4. 讨论
4.1 物源分析
4.1.1 陆源风化
传统观点认为,陆源风化是沉积型锰矿床的重要物源(叶连俊等,1963; Frakes and Bolton,1984; Bolton and Frakes,1985),对于龙门山构造带锰矿床,亦有学者认为Mn源自摩天岭古陆的风化(杨先光等,2016)。在沉积地球化学中,Al通常赋存于黏土矿物等铝硅酸盐中,十分稳定,通常代表陆源输入(Calvert and Pedersen,1993; Piper and Perkins,2004),毛家山锰矿床Ⅲ号矿体含矿岩系各岩/矿石的Al2O3具有较大的变化范围(0.38%~18.29%),指示陆源输入的波动,而TiO2、K2O、Rb、Zr与Al2O3呈显著正相关(图6 A,B,F,G),指示其主要来自陆源输入。
Nesbitt and Young(1982)定义的化学蚀变指数(CIA)是定量表征陆源风化程度的重要指标,其计算公式为:
$ \mathrm{C}\mathrm{I}\mathrm{A}=\left\{n\left({\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3}\right)/\left[n\left({\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3}\right)+n\left({\mathrm{C}\mathrm{a}\mathrm{O}}^{\mathrm{*}}\right)+ n\left({\mathrm{N}\mathrm{a}}_{2}\mathrm{O}\right)+ n\left({\mathrm{K}}_{2}\mathrm{O}\right)\right]\right\}\times 100 $ ,这里的CaO*代表铝硅酸盐中的铝。随着风化作用程度的增强,CIA值逐渐升高,CIA=50~65指示寒冷、干燥的弱化学风化条件;CIA=65~85指示温暖湿润条件下中等的化学风化程度;CIA>85指示炎热、潮湿的热带、亚热带条件下的强烈的化学风化程度(Rollinson and Pease,2021;包万铖等,2023)。此外,CIA指数常与A–CN–K图解[A=n(Al2O3);CN=n(CaO)+n(Na2O);K=n(K2O)]联用(图8),以综合讨论源区及风化趋势。图 8 毛家山锰矿床Ⅲ号矿体含矿岩系岩/矿石A–CN–K三元图解(底图据Rollinson and Pease,2021)Figure 8. A–CN–K diagram of rocks and ores from the ore-bearing rock series of the No. Ⅲ ore body, Maojiashan manganese deposit (modified from Rollinson and Pease, 2021)本研究显示,毛家山锰矿床Ⅲ号锰矿体含矿岩系各岩/矿石CIA值介于46.49~87.46,除3件碳泥质板岩、1件黄铁矿层与1件锰矿石样品CIA值<65,1件黄铁矿层样品CIA值>85外,其余样品的CIA值均介于65~85,指示中等风化程度;在A–CN–K三元图解(图8)中,数据点整体显示化学风化为花岗闪长岩–花岗岩中长石向白云母伊利石转化,且源区可能存在Na的流失。整体上毛家山锰矿床Ⅲ号矿体含矿岩系中等陆源风化程度,高于形成于Sturtian冰期—间冰期的“大塘坡式”锰矿(含矿岩系及锰矿石CIA值为52~72,Wang et al.,2020),有利于陆源Mn的迁出(郑明华,1993),但Al2O3与MnO及MnO+Fe2O3之间大致呈现负相关关系(图6C-D),推测陆源风化很可能并非Mn的主要来源。
4.1.2 海底热液活动
20世纪60年代以来,随着现代海底热液活动区与热水沉积物的发现,人们逐渐认识到海底热液亦是沉积型锰矿床重要物源。Bonatti(1972)、Bau et al.(2014)、Josso et al.(2017)系统分析了现代热水成因和水成成因Fe-Mn结核/结壳的元素地球化学组成,发现相对于热液成因的Fe-Mn结核/结壳,水成成因的Fe-Mn结核/结壳具更富集Cu、Co、Ni、Zr、Ce、Nd、Y的特点,提出了(Cu+Co+Ni)×10–Fe–Mn、(Zr+Y+Ce)×100–(Cu+Ni)×15–(Fe+Mn)/4三元判别图解和Ce/Ce*–(Y/Ho)PAAS、Ce/Ce*–Nd二元判别图,并在匈牙利Úrkút锰矿(Polgári et al.,2012)、埃塞俄比亚Enkafela锰矿(Melaku et al.,2022)以及我国“大塘坡式”锰矿(Yu et al.,2016; Wu et al.,2016)、城口锰矿(Gao et al.,2021)、西昆仑玛尔坎苏锰矿(Zhang et al.,2020)等一系列大—中型锰矿床的研究中,识别出了Mn的海底热液来源。在(Cu+Co+Ni)×10–Fe–Mn、(Zr+Y+Ce)×100–(Cu+Ni)×15–(Fe+Mn)/4、Ce/Ce*–(Y/Ho)PAAS和Ce/Ce*–Nd图解中(图9A-D;C、D中去掉了无Ce异常的10件样品),毛家山锰矿床Ⅲ号矿体含矿岩系各岩/矿石主要落入热液成因区或水成–热液混合区,指示Mn很可能主要来自海底热液输入。
图 9 毛家山锰矿床Ⅲ号矿体含矿岩系岩/矿石(Cu+Co+Ni)×10–Fe–Mn(A,据Bonatti et al.,1972)、(Zr+Y+Ce)×100–(Cu+Ni)×15–(Fe+Mn)/4(B,据Josso et al.,2017)、Ce/Ce*–(Y/Ho)PAAS(C,据Bau et al.,2014)、Ce/Ce*–Nd(D,据Bau et al.,2014)和Fe/Ti–Al/(Al+Fe+Mn)判别图解(E,据Bostrom,1983)Figure 9. (Cu+Co+Ni)×10–Fe–Mn (A, Bonatti et al., 1972), (Zr+Y+Ce)×100–(Cu+Ni)×15–(Fe+Mn)/4 (B, Josso et al., 2017), Ce/Ce* vs. (Y/Ho)PAAS (C, Bau et al., 2014), Ce/Ce* vs. Nd (D, Bau et al., 2014), and Fe/Ti–Al/(Al+Fe+Mn) (E, Bostrom, 1983) discriminant diagrams of rocks and ores from the ore-bearing rock series of the No. Ⅲ ore body, Maojiashan manganese depositMarching et al.(1982)、Bostrom(1983)研究指出,现代海底热水沉积物有富Fe、Mn,贫Al、Ti的特征,通过Al/(Al+Fe+Mn)、Fe/Ti比值可有效判别热水与非热水沉积,在热水沉积岩/物中,上述指标分别为<0.35和>20。毛家山锰矿Ⅲ号矿体锰矿石、黄铁矿层、含锰硅质白云岩和无矿化碳泥质板岩+硅质岩+白云岩的Al/(Al+Fe+Mn)比值分别为0.01~0.06、0.07~0.61、0.05~0.34和0.37~0.79,Fe/Ti比值分别为171.06~241.67、12.47~174.34、34.51~102.47和7.40~28.51,在Fe/Ti–Al/(Al+Fe+Mn)图解上(图9E),锰矿石、黄铁矿层和含锰硅质白云岩均显示出含大量热水沉积组分,同样指示海底热液活动很可能是Mn的主要来源,Al/(Al+Fe+Mn)比值在剖面柱状图上的变化(图3),指示海底热液活动强度的变化。
4.2 沉积环境
4.2.1 氧化还原环境
含矿岩系中锰矿层、含锰硅质白云岩和黄铁矿层以大量发育草莓状黄铁矿为特征,粒径变化分别为0.79 ~30 μm、0.82~43 μm和0.83~28 μm,整体显示次氧化–缺氧–硫化波动变化的底层水条件(Bond and Wignall,2010),这可得到氧化–还原敏感元素指标的支持。
变价元素U、Mo和V具有高价氧化态易溶,低价态还原沉淀的性质,是指示古海洋氧化还原条件的重要指标(Tribovillard et al.,2006; Algeo and Liu,2020; Algeo and Li,2020; Bennett and Canfield,2020; 葛祥英等,2021)。由于U的还原往往发生在次氧化环境中的Fe(Ⅲ)-Fe(Ⅱ)界面附近,V的还原发生在次氧化–缺氧界面附近,而Mo仅在硫化水体中才能还原沉淀,因此,当底层水在氧化→硫化的演化过程中,U先沉淀,V其次,Mo沉淀最晚(Piper and Calvert,2009; Algeo and Tribovillard,2009)。此外,Mo还可通过Fe-Mn氧化物/氢氧化物颗粒的吸附作用,加速向沉积物的转移(颗粒传输),而U、V尚未发现这种机制(Tribovillard et al.,2006;Algeo and Tribovillard,2009)。基于上述原理,Algeo and Tribovillard(2009)和Piper and Calvert(2009)分别提出了用于反演现代和古代海洋氧化还原条件EFMo–EFU图解和V/Mo–Mo图解(图10A-B),并指出沉积岩/物的EFMo/EFU比值介于0.1×SW~0.3×SW时,指示次氧化环境,介于0.3×SW~1×SW时,指示缺氧环境,介于1×SW~3×SW时,指示硫化环境,介于3×SW~10×SW时,则指示与Fe-Mn氧化物/氢氧化物吸附有关的颗粒传输(SW为现代海水的Mo/U比值,平均取3.1)(Algeo and Tribovillard,2009; Tribovillard et al.,2012)。V/Cr、Ni/Co和V/(V+Ni)比值亦是判断古海洋氧化还原条件的重要指标(Algeo and Liu,2020)。Jones and Manning(1994)认为,V/Cr>4.25、Ni/Co>7.00时,指示缺氧–硫化条件;V/Cr<2.00、Ni/Co<5.00时,指示氧化环境;而当2.00<V/Cr<4.25、5.00<Ni/Co<7.00时,指示次氧化环境。Hatch and Leventhal(1992)指出,0.84<V/(V+Ni)<0.89时,指示硫化环境,0.54<V/(V+Ni)<0.82时,指示缺氧环境;0.46<V/(V+Ni)<0.60指示次氧化环境,V/(V+Ni)<0.46指示氧化环境。
图 10 毛家山锰矿床Ⅲ号矿体含矿岩系岩/矿石氧化还原条件判别图A. EFMo–EFU图解(据Algeo and Tribovillard,2009;“大塘坡式”锰矿范围据Yu et al.,2016; Wu et al.,2016数据圈定,新疆玛尔坎苏锰矿范围据Dong et al.,2023数据圈定,城口锰矿范围据Zhang et al.,2021b; Gao et al.,2021数据圈定);B. V/Mo–Mo图解(底图据Piper and Calvert,2009);C. V/Cr–V/(V+Ni)图解;D. Ni/Co–V/(V+Ni)图解;图C、D中氧化、次氧化、缺氧、硫化界线据Hatch and Leventhal,1992;Jones and Manning,1994Figure 10. Discrimination diagram of redox conditions for rocks and ores from the ore bearing rock series of the No. Ⅲ ore body, Maojiashan manganese deposit毛家山锰矿床含矿岩系岩/矿石的EFMo/EFU比值主要集中在0.3×SW~3×SW,在EFMo–EFU图解、V/Mo–Mo图解、V/Cr–V/(V+Ni)图解、Ni/Co–V/(V+Ni)图解(图10)和含矿岩系地球化学参数图上(图3),虽各地球化学指标存在一定差异,但整体显示含矿岩系沉积于次氧化–缺氧–硫化波动变化的底层水环境,相对于锰矿层和含锰硅质白云岩,黄铁矿层和不含矿碳泥质板岩+白云岩+硅质岩的缺氧–硫化程度更高。
4.2.2 古生产力条件
含矿岩系富含有机质,绝大多数测试样品TOC含量>1%,暗示较高的古海洋生产力条件,含矿岩系及矿石中P、Cd的强烈富集亦支持这一推论。地质时间尺度上,海水生产力受到海洋中营养元素(尤其是活性P含量)可利用程度的控制(Tyrrell,1999)。在地质演化进程中,活性磷与总磷埋藏速率峰值往往与大洋缺氧事件之间有着良好的对应关系(Föllm,1996);而现代大洋研究也发现,在上升流等高生产力地区,沉积物中存在着大量的P富集,因此,古海洋中P的埋藏记录,是判断古海洋生产力的重要指标(Piper and Perkins,2004; Schoepfer et al.,2015)。与P类似,Cd具有营养元素的地球化学行为,亦是判断古海洋生产力的重要指标(Tribovillard et al.,2006)。现有研究表明,海水中的Cd主要与有机质一起沉淀进入沉积物(Piper and Perkins,2004),并在埋藏过程中,随有机质分解进入到硫化物(Morford and Emerson,1999)或磷酸盐中(Jarvis et al.,1994),因此,沉积物中Cd的富集指示高生产力条件(Conway and John,2015)。
本次研究显示,毛家山锰矿床Ⅲ矿体含矿岩系P和Cd强烈富集(图5),锰矿石、黄铁矿层、含锰硅质白云岩和无矿化碳泥质板岩+硅质岩+白云岩的EFP、EFCd均值分别为56.42、
1332.53 ,10.76、432.72,67.47、146.41和10.36、64.24,类似于意大利中部Umbria-Marche盆地C/T界限处高生产力缺氧条件下所形成的黑色页岩(EFP=14,EFCd=127,Turgeon and Brumsack,2006),指示较高的古生产力条件。4.2.3 古水文环境
沉积物中TOC、Mo、Cd是判断古海洋水文环境的重要指标(Algeo and Rowe,2012; Sweere et al.,2016)。Algeo and Lyons(2006)、Algeo et al.(2007)研究认为,除氧化还原条件外,沉积物中Mo富集还受有机质含量(TOC)和海水中Mo浓度的影响,在缺氧–硫化环境下,有机质会被很好地保存,若此时为局限滞留盆地,盆地中海水与外界交换受阻,外界Mo的补给率小于其沉积速率,导致海水中Mo含量降低,沉积物中的Mo/TOC值较低;若此时沉积盆地开放,与外界海水交换强烈,Mo含量较高,Mo/TOC值也较高。因此,Mo–TOC关系可帮助判断盆地的局限程度(Algeo and Rowe,2012)。此外,生产力指示元素Cd受浮游生物吸收与释放的影响,通常富集于浮游生物大量繁殖、生产力较高的上升洋流区(Bruland,1980; Conway and John,2015),因此,沉积岩/物的Cd/Mo比值和Cd–Mo图解亦可帮助区分上升洋流区与局限盆地,通常上升洋流区Cd/Mo比值>0.1(Sweere et al.,2016)。毛家山锰矿床Ⅲ号锰矿体含矿岩系和矿石具有较高的Mo/TOC比值和Cd/Mo比值,Mo–TOC图解和Cd–Mo图解(图11)显示,含矿岩系岩/矿石主体形成于弱局限上升洋流环境。
Figure 11. Mo vs. TOC (A, Tribovillard et al., 2012) and Cd vs. Mo (B, Sweere et al., 2016) diagrams of rocks and ores from the ore-bearing rock series of the No. Ⅲ manganese ore body, Maojiashan manganese deposit4.3 Mn的沉淀机制
大量研究表明,海水中Mn的沉淀富集机制主要有两种:(1)在氧化–次氧化界面之上的氧化底层水环境中,自养微生物直接/间接氧化作用下,Mn以MnO2/MnOOH的形式沉淀进入沉积物;在埋藏过程中,特别是还原菌参与下,MnO2/MnOOH被还原成Mn2+,于孔隙水中形成锰的碳酸盐(Maynard,2010; 2014; Polgári et al.,2012; Yu et al.,2016,2019; Zhang et al.,2021b; 2022)。(2)在次氧化–硫化的富Mn2+底层水环境中,微生物作用下,先形成微晶方解石/白云石沉淀,碳酸锰矿物或在水体中通过Mn2+类质同象替代Ca2+、Mg2+富集沉淀成矿,或在孔隙水中以微晶方解石/白云石为核心和模板自生沉淀形成锰矿层(Herndon et al.,2018; Wittkop et al.,2020; Gao et al.,2021; Chen et al.,2022,2023)。通常,锰矿石中的原生锰氧化物残余(Johnson et al.,2016; Zhang et al.,2020)、正Ce异常(Bau et al.,2014; Zhang et al.,2020)以及Mn含量与δ13Ccarb之间的负相关关系(Polgári et al.,1991; Maynard,2010)是第一种方式的重要证据,而第二种方式形成的锰矿石则无上述特征。
毛家山锰矿床Ⅲ号锰矿体含矿岩系沉积于次氧化−硫化水体中,矿石中未见Mn的氧化物,在稀土元素配分图上,未见正Ce异常,且EFMo–EFU图解上,未见Mo元素受Fe-Mn氧化物吸附颗粒传输的趋势,与“大塘坡式”锰矿(Yu et al.,2016; Wu et al.,2016)、新疆玛尔坎苏锰矿(Zhang et al.,2020; Dong et al.,2023)以及城口锰矿(Zhang et al.,2021b; Gao et al.,2021)明显不同(图12,图10A),表明其不可能是通过第一种方式富集沉淀。而锰矿层(矿体)由厘米至毫米级多旋回富锰硫化物层和富锰碳酸盐层组成,富锰硫化物层发育大量硫锰矿,又与第二种方式存在显著差异。
图 12 毛家山锰矿床Ⅲ号锰矿体含矿岩系与“大塘坡式”锰矿、新疆玛尔坎苏锰矿、城口锰矿REE均值PAAS标准化配分模式对比图(“大塘坡式”锰矿据Yu et al.,2016; Wu et al.,2016;玛尔坎苏锰矿据Zhang et al.,2020; Dong et al.,2023;城口锰矿据Zhang et al.,2021b; Gao et al.,2021)Figure 12. Comparison diagram of post-Archean Australian Shale (PAAS) normalized averaged REE+Y distribution patterns between ore-bearing rock series from the No. Ⅲ manganese ore body of Maojiashan manganese deposit, Datangpo-style manganese deposit, Markansu manganese deposit, and Chengkou manganese deposit (Datangpo-style manganese ore data according to Yu et al., 2016; Wu et al., 2016; Malkansu manganese mine data according to Zhang et al., 2020; Dong et al., 2023; Chengkou manganese mine data according to Zhang et al., 2021b; Gao et al., 2021)综合次氧化–缺氧–硫化波动变化的底层水环境、高古生产力条件;锰矿层由厘米至毫米级多旋回富锰硫化物层和富锰碳酸盐层组成,硫锰矿以他形晶分布在黄铁矿、锰白云石晶粒间,常见其包裹草莓状黄铁矿等特征,本研究认为Mn的富集沉淀机制很可能与生物诱导作用和微生物还原硫酸盐作用(BSR)有关。成矿过程大致如下:早寒武世,后龙门山地区为海相环境,上升洋流发育,将营养物质和深部富Fe2+、Mn2+的海底热液带到台地边缘陆棚地带;在富营养条件下,微生物大量繁殖、死亡、沉降,通过有氧呼吸分解有机质形成次氧化–缺氧的底层水环境,提升底层水和空隙水中HCO3-的浓度,诱导锰白云石大量沉淀,形成富锰碳酸盐层(CH2O+O2→H++HCO3-;Mn2++Ca2++HCO3-+OH-→CaMnCO3)。当底层水和孔隙水中O2耗尽,BSR起主导,释放H2S进入孔隙水和底层水,形成硫化环境,H2S优先与先与Fe2+离子结合,形成草莓状黄铁矿,剩余H2S在孔隙水中与Mn2+结合形成硫锰矿,构成富锰硫化物层(2CH2O+SO42-→2HCO3-+H2S;Fe2++2H2S→FeS2+2H++H2;Mn2++H2S→MnS+2H+)。
5. 结论
(1)毛家山锰矿床Ⅲ号矿体含矿岩系为下寒武统邱家河组五段,主要由锰矿层(Ⅲ号锰矿体)、黄铁矿层、含锰硅质白云岩、碳泥质板岩、硅质岩和白云岩组成。锰矿层由厘米至毫米级多旋回富锰硫化物层和富锰碳酸盐岩层组成。富锰碳酸盐岩层以发育锰白云石为特征,草莓状黄铁矿相对较少;富锰硫化物层以富含硫锰矿、草莓状黄铁矿和锰白云石为特征,硫锰矿则呈他形晶分布在黄铁矿、锰白云石晶粒间,常见硫锰矿包裹草莓状黄铁矿。
(2)含矿岩系CIA值主要介于65~85,指示中等陆源风化条件,有利于陆源锰的迁出,但Al2O3与MnO之间大致呈现负相关关系,推测陆源风化很可能并非锰的主要来源;在(Cu+Co+Ni)×10–Fe–Mn和(Zr+Y+Ce)×100–(Cu+Ni)×15–(Fe+Mn)/4、Ce/Ce*–(Y/Ho)PAAS、Ce/Ce*–Nd、Fe/Ti–Al/(Al+Fe+Mn)系列判别图解中,含矿岩系各岩/矿石主要落入热液成因区或水成–热液混合区,指示锰主要来自海底热液输入。
(3)含矿岩系草莓状黄铁矿粒径、Mo/U比值、V/Cr比值、V/(V+Ni)比值等氧化还原指标指示其形成于次氧化–缺氧–硫化波动变化的底层水环境;古海洋生产力指标P和Cd强烈富集,指示较高的古海洋生产力条件;Mo–TOC图解和Cd–Mo图解则显示,含矿岩系主体形成于弱局限的上升洋流环境。
(4)Mn的富集沉淀机制很可能与生物诱导作用和BSR有关。上升洋流将营养物质和深部富Fe2+、Mn2+的海底热液带到台地边缘陆棚地带;在富营养条件下,微生物大量繁殖、死亡、沉降,通过有氧呼吸形成次氧化–缺氧的底层水环境,诱导锰白云石大量沉淀,形成富锰碳酸盐层;当底层水与孔隙水中O2耗尽,通过BSR释放H2S形成硫化环境,H2S先后与Fe2+、Mn2+离子结合,形成草莓状黄铁矿和硫锰矿,构成富锰硫化物层。
注释
① 四川省冶金地质勘查局成都地质调查所, 2022. 四川省青川县毛家山锰矿勘探实施方案[R].
1 *数据资料请联系编辑部或登录期刊网站https://www.cjyttsdz.com.cn/获取。 -
图 1 龙门山构造带大地构造位置图(A);龙门山构造带区域地质矿产图(B);龙门山构造带早寒武世岩相古地理图(C,据纪冬平等,2022;杨先光等,2016修改)
图A:1—克拉通–造山带边界断裂;2—缝合带主要断裂;3—地层单元边界断裂及次级断裂。图B:1—南华系—震旦系;2—志留系茂县群;3—志留系;4—奥陶系;5—寒武系;6—新元古界火山岩;7—断层;8—边界线;9—锰矿床;10—磷矿床
Figure 1. Geotectonic location of the Longmenshan tectonic belt (A), regional geological and mineral resources of Longmenshan tectonic belt (B), early Cambrian lithofacies paleogeography of Longmenshan tectonic belt (C, modified from Ji et al., 2022; Yang et al., 2016)
图 4 毛家山锰矿床Ⅲ号矿体含矿岩系特征
A. 锰矿层(矿体);B. 黄铁矿层;C. 含锰硅质白云岩;D. 碳泥质板岩;E. 矿石硫化物层中发育的草莓状黄铁矿与硫锰矿;F. 矿石碳酸盐层中发育的锰白云石,锰白云石“雾心”显示微生物特征;G. 锰矿石中锰白云石与石英粒间发育有机质;H. 黄铁矿层中发育草莓状黄铁矿。Alb—硫锰矿;Py—黄铁矿;Kut—锰白云石;Qtz—石英;OM—有机质
Figure 4. Characteristics of the ore-bearing rock series of the No. Ⅲ manganese ore body, Maojiashan manganese deposit
图 7 毛家山锰矿床Ⅲ号矿体含矿岩系各岩/矿石REE+Y的PAAS标准化配分图(A-D)、Ce/Ce*–Pr/Pr *图解(E,据Bau and Dulsk,1996)和Eu/Eu*–Ba/Bd图解(F)
图E:I—La、Ce无异常;Ⅱa—La正异常、Ce无异常;Ⅱb—La负异常,Ce无异常;Ⅲa—Ce正异常;Ⅲb—Ce负异常
Figure 7. Diagrams of post-Archean Australian Shale (PAAS) normalized REE+Y patterns (A-D), Ce/Ce* vs. Pr/Pr* (E, modified from Bau and Dulsk, 1996), and Eu/Eu*–Ba/Bd of the rocks and ores from the ore-bearing rock series of the No. Ⅲ ore body, Maojiashan manganese deposit (F)
图 8 毛家山锰矿床Ⅲ号矿体含矿岩系岩/矿石A–CN–K三元图解(底图据Rollinson and Pease,2021)
Figure 8. A–CN–K diagram of rocks and ores from the ore-bearing rock series of the No. Ⅲ ore body, Maojiashan manganese deposit (modified from Rollinson and Pease, 2021)
图 9 毛家山锰矿床Ⅲ号矿体含矿岩系岩/矿石(Cu+Co+Ni)×10–Fe–Mn(A,据Bonatti et al.,1972)、(Zr+Y+Ce)×100–(Cu+Ni)×15–(Fe+Mn)/4(B,据Josso et al.,2017)、Ce/Ce*–(Y/Ho)PAAS(C,据Bau et al.,2014)、Ce/Ce*–Nd(D,据Bau et al.,2014)和Fe/Ti–Al/(Al+Fe+Mn)判别图解(E,据Bostrom,1983)
Figure 9. (Cu+Co+Ni)×10–Fe–Mn (A, Bonatti et al., 1972), (Zr+Y+Ce)×100–(Cu+Ni)×15–(Fe+Mn)/4 (B, Josso et al., 2017), Ce/Ce* vs. (Y/Ho)PAAS (C, Bau et al., 2014), Ce/Ce* vs. Nd (D, Bau et al., 2014), and Fe/Ti–Al/(Al+Fe+Mn) (E, Bostrom, 1983) discriminant diagrams of rocks and ores from the ore-bearing rock series of the No. Ⅲ ore body, Maojiashan manganese deposit
图 10 毛家山锰矿床Ⅲ号矿体含矿岩系岩/矿石氧化还原条件判别图
A. EFMo–EFU图解(据Algeo and Tribovillard,2009;“大塘坡式”锰矿范围据Yu et al.,2016; Wu et al.,2016数据圈定,新疆玛尔坎苏锰矿范围据Dong et al.,2023数据圈定,城口锰矿范围据Zhang et al.,2021b; Gao et al.,2021数据圈定);B. V/Mo–Mo图解(底图据Piper and Calvert,2009);C. V/Cr–V/(V+Ni)图解;D. Ni/Co–V/(V+Ni)图解;图C、D中氧化、次氧化、缺氧、硫化界线据Hatch and Leventhal,1992;Jones and Manning,1994
Figure 10. Discrimination diagram of redox conditions for rocks and ores from the ore bearing rock series of the No. Ⅲ ore body, Maojiashan manganese deposit
图 11 毛家山锰矿床Ⅲ号矿体含矿岩系岩/矿石Mo–TOC图解(A,据Tribovillard et al.,2012)和Cd–Mo图解(B,据Sweere et al.,2016)
Figure 11. Mo vs. TOC (A, Tribovillard et al., 2012) and Cd vs. Mo (B, Sweere et al., 2016) diagrams of rocks and ores from the ore-bearing rock series of the No. Ⅲ manganese ore body, Maojiashan manganese deposit
图 12 毛家山锰矿床Ⅲ号锰矿体含矿岩系与“大塘坡式”锰矿、新疆玛尔坎苏锰矿、城口锰矿REE均值PAAS标准化配分模式对比图(“大塘坡式”锰矿据Yu et al.,2016; Wu et al.,2016;玛尔坎苏锰矿据Zhang et al.,2020; Dong et al.,2023;城口锰矿据Zhang et al.,2021b; Gao et al.,2021)
Figure 12. Comparison diagram of post-Archean Australian Shale (PAAS) normalized averaged REE+Y distribution patterns between ore-bearing rock series from the No. Ⅲ manganese ore body of Maojiashan manganese deposit, Datangpo-style manganese deposit, Markansu manganese deposit, and Chengkou manganese deposit (Datangpo-style manganese ore data according to Yu et al., 2016; Wu et al., 2016; Malkansu manganese mine data according to Zhang et al., 2020; Dong et al., 2023; Chengkou manganese mine data according to Zhang et al., 2021b; Gao et al., 2021)
-
[1] Algeo T J,Li C,2020. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta,287:8 − 26. DOI: 10.1016/j.gca.2020.01.055
[2] Algeo T J,Liu J,2020. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology,540:119549. DOI: 10.1016/j.chemgeo.2020.119549
[3] Algeo T J,Lyons T W,2006. Mo-total organic carbon covariation in modern anoxic marine environments:Implication for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography,21:1 − 23.
[4] Algeo T J,Lyons T W,Blakey R C,et al.,2007. Hydrographic conditions of the Devono-Carboniferous North American Seaway inferred from sedimentary Mo-TOC relationships[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,256:204 − 230.
[5] Algeo T J,Rowe H,2012. Paleoceanographic applications of trace-metal concentration data[J]. Chemical Geology,324:6 − 18.
[6] Algeo T J,Tribovillard N,2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology,268(3):211 − 225.
[7] 白新会,王挽琼,袁明强,等,2022. 四川省平武县箭竹垭锰矿地质特征及矿床成因探讨[J]. 中国锰业,40(4):18 − 22. Bai X H,Wang W Q,Yuan M Q,et al.,2022. Geological characteristics and genesis of Jianzhuya manganese deposit in Pingwu,Sichuan,China[J]. Manganese Industry,40(4):18 − 22. (in Chinese with English abstract).
[8] 包万铖,夏国清,路畅,等,2023. 西藏伦坡拉盆地牛堡组二段晚始新世−早渐新世地球化学特征与古气候意义[J]. 沉积与特提斯地质,43(3):580 − 591. Bao W C,Xia G Q,Lu C,et al.,2023. Late Eocene to early Oligocene geochemical characteristics and paleoclimatic significance of the second member of Niubao Formation in the Lunpola Basin,Tibet[J]. Sedimentary Geology and Tethyan Geology,43(3):580 − 591 (in Chinese with English abstract).
[9] Bau M,Dulski P,1996. Distribution of yttrium and rare earth elements in the Penge and Kuruman iron formations,Transvaal supergroup South Africa[J]. Precambrian Research,79:37 − 55. DOI: 10.1016/0301-9268(95)00087-9
[10] Bau M,Schmidt K,Koschinsky A,et al.,2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology,381:1 − 9. DOI: 10.1016/j.chemgeo.2014.05.004
[11] Bennett W W,Canfield D E,2020. Redox-sensitive trace metals as paleoredox proxies:A review and analysis of data from modern sediments[J]. Earth-Science Reviews,204:103175. DOI: 10.1016/j.earscirev.2020.103175
[12] Bolton B R,Frakes L A,1985. Geology and genesis of manganese oolite,Chiatura,Georgia,U.S.S.R.[J]. Geological Society of America Bulletin,96:1398 − 1406. DOI: 10.1130/0016-7606(1985)96<1398:GAGOMO>2.0.CO;2
[13] Bonatti E,Kraemer T,Rydell H,1972. Classification and genesis of submarine iron-manganese deposits [C]//Horn D R (ed),Ferromanganese deposits on the ocean floor. Natl. Sci. Found.,Washington:149 − 165.
[14] Bond D P,Wignall P B,2010. Pyrite framboid study of marine Permian–Triassic boundary sections:A complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin,122(7 − 8):1265 − 1279.
[15] Boström K,1983. Genesis of Ferromanganese Deposits-Diagnostic Criteria for Recent and Old Deposits [C]//Rona P A.,Eds.,Hydrothermal processes at seafloor spreading centers. Springer,Berlin:473 − 489.
[16] Bruland K W,1980. Oceanographic distributions of cadmium,zinc,nickel,and copper in the North Pacific[J]. Earth and Planetary Science Letters,47(2):176 − 198. DOI: 10.1016/0012-821X(80)90035-7
[17] Brumsack H J,2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,232(2-4):344 − 361.
[18] Calvert S E,Pedersen T F,1993. Geochemistry of recent oxic and anoxic sediments: implications for the geological record[J]. Marine Geology,113:67 − 88.
[19] Chen F G,Pufahl P K,Wang Q F,et al.,2022. A new model for the genesis of carboniferous Mn ores,Longtou deposit,South China block[J]. Economic Geology,117(1):107 − 125. DOI: 10.5382/econgeo.4855
[20] Chen F G,Wang Q F,Pufahl P K,et al.,2023. Carbonate-hosted manganese deposits and ocean anoxia[J]. Earth and Planetary Science Letters,622:118385. DOI: 10.1016/j.jpgl.2023.118385
[21] 程文斌,顾雪祥,胡修棉,等,2008. 现代大洋红色粘土与白垩纪大洋红层元素地球化学对比[J]. 地质学报,82(1):37 − 47. DOI: 10.3321/j.issn:0001-5717.2008.01.005 Cheng W B,Gu X X,Hu X M,et al.,2008. Comparative element geochemistry of recent oceanic red clay and Cretaceous oceanic red bed[J]. Acta Geologica Sinica,82(1):37 − 47 (in Chinese with English abstract). DOI: 10.3321/j.issn:0001-5717.2008.01.005
[22] Conway T M,John S G,2015. Biogeochemical cycling of cadmium isotopes along a highresolution section through the North Atlantic Ocean [J]. Geochimica et Cosmochimica Acta,148:269 − 283.
[23] De Baar H J W,Schijf J,Byrne R H,1991. Solution chemistry of the rare-earth elements in seawater[J]. Eur. J. Solid State Inorg. Chem.,28:357 − 373.
[24] Dong Z G,Peng Z D,Robbins L J,et al.,2023. Episodic ventilation of euxinic bottom waters triggers the formation of black shale-hosted Mn carbonate deposits[J]. Geochimica et Cosmochimica Acta,341:132 − 149.
[25] Föllmi K B,1996. The phosphorus cycle,phosphogenesis and marine phosphate-rich deposits[J]. Earth Science Reviews,40:55 − 124. DOI: 10.1016/0012-8252(95)00049-6
[26] Frakes L A,Bolton B R,1984. Origin of manganese giants:Sea level change and anoxic-oxic history [J]. Geology,12(2):83 − 86.
[27] Gao Z F,Zhu X K,Wang D,et al.,2021. Insights into hydrothermal controls and processes leading to the formation of the late Ediacaran gaoyan stratiform manganese-carbonate deposit,southwest China[J]. Ore Geology Reviews,139:104524. DOI: 10.1016/j.oregeorev.2021.104524
[28] 葛祥英,牟传龙,余谦,等,2021. 四川盆地东部五峰组—龙马溪组黑色页岩有机质富集规律探讨[J]. 沉积与特提斯地质,41(3):418 − 435. Ge X Y,Mou C L,Yu Q,et al.,2021. A study on the enrichment of organic materials in black shales of the Wufeng to Longmaxi Formations in eastern Sichuan Basin [J]. Sedimentary Geology and Tethyan Geology,41(3):418 − 435 (in Chinese with English abstract).
[29] Han T,Peng Y B,Bao H M,2022. Sulfate-limited euxinic seawater facilitated Paleozoic massively bedded barite deposition[J]. Earth and Planetary Science Letters,582:117419. DOI: 10.1016/j.jpgl.2022.117419
[30] Hatch J R,Leventhal J S,1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,USA[J]. Chem. Geol.,99(1 − 3):65 − 82. DOI: 10.1016/0009-2541(92)90031-Y
[31] Hein J R,Fan D L,Ye J,et al.,1999. Composition and origin of early Cambrian Tiantaishan phosphorite–Mn carbonate ores,Shaanxi province,China[J]. Ore Geology Reviews,15(1 − 3):95 − 134. DOI: 10.1016/S0169-1368(99)00017-7
[32] Herndon E M,Havig J R,Singer D M,et al.,2018. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake[J]. Geochimica et Cosmochimica Acta,231:50 − 63. DOI: 10.1016/j.gca.2018.04.013
[33] Jarvis I,Burnett W C,Nathan Y,et al.,1994. Phosphorite geochemistry:State of the art and environmental concerns[J]. Eclogae Geologicae Helvetiae,87(3):643 − 700.
[34] Polgári M,Okita P M,Hein J R,1991. Stable isotope evidence for the origin of the Úrkút manganese ore deposit,Hungary[J]. Journal of Sedimentary Research,61(3):384 − 393.
[35] 纪冬平,王朋,高政伟,等,2022. 陕西宁强县中坝锰矿床地球化学特征及成矿模式[J]. 矿床地质,41(3):469 − 488. Ji D P,Wang P,Gao Z W,et al.,2022. Geochemical characteristics and metallogenic model of Zhongba manganese deposit in Ningqiang County,Shaanxi,China[J]. Mineral Deposits,41(3):469 − 488 (in Chinese with English abstract).
[36] 纪冬平,王朋,张凯,等,2021. 陕西宁强县中坝地区发现沉积型锰(钴)矿[J]. 矿产与地质,35(2):365 − 369. Ji D P,Wang P,Zhang K,et al.,2021. Discovery of the sedimentary Mn (Co) deposit in Zhongba area,Ningqiang County of Shaanxi[J]. Mineral Resources and Geology,35(2):365 − 369 (in Chinese with English abstract).
[37] Johnson J E,Webb S M,Ma C,et al.,2016. Manganese mineralogy and diagenesis in the sedimentary rock record [J]. Geochimica et Cosmochimica Acta,173:210 − 231.
[38] Jones B,Manning D A C,1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chem. Geol.,111:111 − 129.
[39] Josso P,Pelleter E,Pourret O,et al.,2017. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews,87:3 − 15. DOI: 10.1016/j.oregeorev.2016.09.003
[40] 李贤凯,罗润,2018. 四川平武杏子树矿产地质特征及成矿模式浅析[J]. 世界有色金属(1):131 − 132. Li X K,Luo R,2018. Analysis of mineral geological characteristics and metallogenic model of apricot tree in Pingwu,Sichuan[J]. World Nonferrous Metals(1):131 − 132. (in Chinese with English abstract).
[41] Li Y H,Schoonmaker J E,2003. Chemical composition and mineralogy of marine sediments [A]// In:Rudnick R L,eds. Treatise on geochemistry,volume 7,sediments,diagenesis,and sedimentary rocks [C]. New York:Elsevier Sciences:1 − 35.
[42] 李佐臣,2009. 扬子地块西北缘后龙门山造山带(北段)物质组成、构造特征及其形成演化[D]. 西安:长安大学. Li Z C,2009. Composition,structural characteristics and evolution of Back-Longmenshan orogen (north section) in the northwest margin of Yangtze Block [D]. Xi'an:Chang'an University (in Chinese with English abstract).
[43] 李佐臣,裴先治,李瑞保,等,2013. 扬子地块西北缘刘家坪地区大滩花岗岩体年代学、地球化学及其构造环境[J]. 地质论评,59(5):869 − 884. Li Z C,Pei X Z,Li R B,et al.,2013. Geochronological and geochemical study on Datan granite in Liujiaping area,northwest Yangtze block and its tectonic sitting[J]. Geological Review,59(5):869 − 884 (in Chinese with English abstract).
[44] Liu H,Sun L,Liu L,et al.,2024. Neoarchean subduction to back-arc extension in the North China Craton:Insights from the Dengfeng basic rock[J]. Solid Earth Sciences,9(3):100192. DOI: 10.1016/j.sesci.2024.100192
[45] 罗绍强,张懿,刘增达,等,2024. 扬子西缘“平溪式”锰矿锰碳酸盐岩沉积成因[J/OL]. 地质通报. http://kns.cnki.net/kcms/detail/11.4648.p.20240508.1812.006.html. Luo S Q,Zhang Y,Liu Z D,et al. ,2024. Sedimentary genesis of Mn-carbonates of the “Pingxi type” Mn deposits in the western Yangtze margin [J/OL]. Geological Bulletin of China. http://kns. cnki.net/kcms/detail/11.4648.p.20240508.1812.006.html (in Chinese with English abstract).
[46] Lyons T W,Reinhard C T,Planavsky N J,2014. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature,506(7488):307 − 315. DOI: 10.1038/nature13068
[47] Marchig V,Gundlach H,Möller P,et al.,1982. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments[J]. Marine Geology,50(3):241 − 256.
[48] Maynard J B,2010. The chemistry of manganese ores through time:A signal of increasing diversity of Earth-surface environments[J]. Economic Geology,105:535 − 552. DOI: 10.2113/gsecongeo.105.3.535
[49] Maynard J B,2014. Manganiferous sediments,rocks,and ores [A]// In:Holland H,and Turekian K eds. Treatise on geochemistry [M].Volume 9,New York:Elsevier Sciences:327 − 349.
[50] McLennan S M,1989. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes [J].Reviews in Mineralogy and Geochemistry,21:169 − 200.
[51] Melaku A A,Getaneh W,Atnafu B,2022. Genesis of the Enkafela Mn deposit:a record of submarine hydrothermal activity in the Afar Depression,Northeast Ethiopia[J]. Applied Earth Science,131(1):2 − 14. DOI: 10.1080/25726838.2022.2035640
[52] Morford J L,Emerson S,1999. The geochemistry of redox sensitive trace metals in sediments[J]. Geochim. Cosmochim. Acta,63:1735 − 1750. DOI: 10.1016/S0016-7037(99)00126-X
[53] Nesbitt H W,Young G M,1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,299:715 − 717. DOI: 10.1038/299715a0
[54] Pagès A,Barnes S,Schmid S,et al.,2019. Micron-scale distribution of metals in Cambrian metalliferous shales,South China:Insights into local biologically driven redox disequilibrium[J]. Chemical Geology,528:119283. DOI: 10.1016/j.chemgeo.2019.119283
[55] 裴先治,李佐臣,丁仨平,等,2009. 扬子地块西北缘轿子顶新元古代过铝质花岗岩:锆石SHRIMP U-Pb年龄和岩石地球化学及其构造意义[J]. 地学前缘,16(3):231 − 249. Pei X Z,Li Z C,Ding S P,et al. 2009. Neoproterozoic Jiaoziding peraluminous granite in the northwest margin of Yangtze Block:Zircon SHRIMP U-Pb age and geochemistry,and their tectonic significance[J]. Earth Science Frontiers,16(3):231 − 249 (in Chinese with English abstract).
[56] Piper D Z,Perkins R B,2004. A modern vs. Permian black shale—the hydrography,primary productivity,and water-column chemistry of deposition[J]. Chemical Geology,206:177 − 197. DOI: 10.1016/j.chemgeo.2003.12.006
[57] Piper D Z,Calvert S E,2009. A marine biogeochemical perspective on black shale deposition[J]. Earth-Science Reviews,95:63 − 96. DOI: 10.1016/j.earscirev.2009.03.001
[58] Polgári M,Hein J R,Vigh T,et al.,2012. Microbial processes and the origin of the Úrkút manganese deposit,Hungary[J]. Ore geology Reviews,47:87 − 109. DOI: 10.1016/j.oregeorev.2011.10.001
[59] Rollinson H R,Pease V,2021. Using geochemical data:To understand geological processes [M]. Cambridge University Press.
[60] Schoepfer S D,Shen J,Wei H,et al.,2015. Total organic carbon,organic phosphorus,and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews,149:23 − 52. DOI: 10.1016/j.earscirev.2014.08.017
[61] Stolper D A,Keller C B,2018. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts[J]. Nature,2018,553(7688):323 − 327.
[62] Su C X,Wang M,Luo D,et al.,2024. Petrological and geochemical insights into the magma plumbing system of the Daliuchong dacite eruption,Tengchong Volcanic Field,SW China[J]. Frontiers in Earth Science,12:1376492. DOI: 10.3389/feart.2024.1376492
[63] Sweere T,van den Boorn S,Dickson A J,et al.,2016. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn,Co,Mo and Cd concentrations[J]. Chemical Geology,441:235 − 245. DOI: 10.1016/j.chemgeo.2016.08.028
[64] Tribovillard N,Algeo T J,Baudin F,et al.,2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation Applications to Mesozoic paleoceanography[J]. Chemical Geology,324:46 − 58.
[65] Tribovillard N,Algeo T J,Lyons T,et al.,2006. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chem. Geol.,232(1):12 − 32.
[66] Turgeon S,Brumsack H J,2006. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria–Marche Basin of central Italy[J]. Chemical Geology,234(3 − 4):321 − 339. DOI: 10.1016/j.chemgeo.2006.05.008
[67] Tyrrell T,1999. The relative influence of nitrogen and phosphorus on oceanic primary production[J]. Nature,400:525 − 529. DOI: 10.1038/22941
[68] 王畅,程文斌,张玙,等,2024. 川西南雷波小沟早寒武世磷矿床磷酸盐富集沉降机制探讨[J]. 地质论评,70(2):563 − 576. Wang C,Cheng W B,Zhang Y,et al.,2024. Discussion on the enrichment and sedimentation mechanisms of phosphates in the Early Cambrian Xiaogou phosphate deposit in Leibo,southwestern Sichuan[J]. Geological Review,70(2):563 − 576 (in Chinese with English abstract).
[69] Wang P,Du Y S,Yu W C,et al.,2020. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history[J]. Earth-Science Reviews,201:103032. DOI: 10.1016/j.earscirev.2019.103032
[70] Wei G Y,Ling H F,Shields G A,et al.,2021. Revisiting stepwise ocean oxygenation with authigenic barium enrichments in marine mudrocks[J]. Geology,49(9):1059 − 1063. DOI: 10.1130/G48825.1
[71] 卫炜,隋佩珊,陈婷婷,等,2024. 新元古代氧化事件驱动海洋Ba循环变化[J]. 高校地质学报,30(3):288 − 296. Wei W,Sui P S,Chen T T,et al.,2024. Changes in oceanic Ba cycle driven by the Neoproterozoic Oxygenation Event[J]. Geological Journal of China Universities,30(3):288 − 296 (in Chinese with English abstract).
[72] Wittkop C,Swanner E D,Grengs A,et al.,2020. Evaluating a primary carbonate pathway for manganese enrichments in reducing environments[J]. Earth and Planetary Science Letters,538:116201. DOI: 10.1016/j.jpgl.2020.116201
[73] Wood R,Liu A G,Bowyer F,et al.,2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion[J]. Nature Ecology & Evolution ,3(4):528 − 538.
[74] Wu C Q,Zhang Z W,Xiao J F,et al.,2016. Nanhuan manganese deposits within restricted basins of the southeastern Yangtze Platform,China:Constraints from geological and geochemical evidence[J]. Ore Geology Reviews,75:76 − 99. DOI: 10.1016/j.oregeorev.2015.12.003
[75] Xin H,Jiang S Y,Yang J H,et al.,2015. Rare earth element and Sr-Nd isotope geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Zhangcunping section from western Hubei Province,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,440:712 − 724.
[76] 许骏,周科宇,熊宇轩,等,2022. 四川省青川县马公锰矿地质特征及找矿预测[J]. 地质找矿论丛,37(1):38 − 43. Xu J,Zhou K Y,Xiong Y X,et al.,2022. Geological characteristics and ore prediction of Magong Mn deposit in Qingchuan county,Sichuan province[J]. Contributions to Geology and Mineral Resources Research,37(1):38 − 43 (in Chinese with English abstract).
[77] Xu L G,Lehmann B,Mao J W,et al.,2016. Strontium,sulfur,carbon,and oxygen isotope geochemistry of the Early Cambrian strata-bound barite and witherite deposits of the Qinling-Daba region,northern margin of the Yangtze Craton,China[J]. Economic Geology,111(3):695 − 718. DOI: 10.2113/econgeo.111.3.695
[78] Yang C,Li X H,Li Z X,et al.,2020. Provenance evolution of age-calibrated strata reveals when and how South China Block collided with Gondwana[J]. Geophysical Research Letters,47(19):e2020GL090282. DOI: 10.1029/2020GL090282
[79] Yang H Y,Xiao J F,Xia Y,et al.,2022. Diagenesis of Ediacaran − early Cambrian phosphorite: Comparisons with recent phosphate sediments based on LA-ICP-MS and EMPA[J]. Ore Geology Reviews,144:104813. DOI: 10.1016/j.oregeorev.2022.104813
[80] 杨绍许,赵祥庭,1996. 天台山磷质岩系锰矿的成因及磷锰离析成矿的规律[J]. 中国锰业,14(3):9 − 13+23. Yang S X,Zhao X T,1996. Genesis of manganese deposit in Tiantaishan phosphatic rock formation and principle of segregation forming of phosphor and manganese minerals [J]. Manganese Industry,14(3):9 − 13+23 (in Chinese with English abstract).
[81] 杨先光, 李仕荣, 杨永鹏, 等, 2016. 四川省锰矿成矿规律及资源评价[M]. 北京: 科学出版社. Yang X G,Li S R,Yang Y P,et al.,2016. Metallogenic regularity and resource evaluation of manganese deposits in Sichuan Province [M]. Beijing:China Science Publishing(in Chinese).
[82] Yao W H,Li Z X,Li W X,et al.,2014. From Rodinia to Gondwanaland:A tale of detrital zircon provenance analyses from the southern Nanhua basin,South China[J]. American Journal of Science,14(1):278 − 313.
[83] 叶连俊,1963. 外生矿床陆源汲取成矿论[J]. 地质科学(2):67 − 87. Ye L J,1963. Metallogenic theory of the exogenous deposits terrigenous draw [J]. Scientia Geologica Sinica(2):67 − 87 (in Chinese with English abstract).
[84] 叶连俊, 1963. 外生矿床陆源汲取成矿论[J]. 地质科学(2): 67 − 87. Yu W C,Algeo T J,Du Y S,et al.,2016. Genesis of Cryogenian Datangpo manganese deposit:Hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,459:321 − 337.
[85] Yu W C,Polgári M,Gyollai I,et al.,2019. Microbial metallogenesis of Cryogenian manganese ore deposits in South China[J]. Precambrian Research,322:122 − 135.
[86] Zeng L K,Wu R S,Luo D X,et al.,1992. Paleogeography of Cambrian rock facies and sedimentary hosted mineral deposits in Sichuan Province [M]. Chengdu:Sichuan Publishing House of Science and Technology(in Chinese). DOI: 10.1016/j.precamres.2019.01.004
[87] 曾良鍷, 吴荣森, 罗代锡, 等, 1992. 四川省寒武纪岩相古地理及沉积层控矿产[M]. 成都: 四川科学技术出版社. Zhang B L,Wang C L,Robbins L J,et al.,2020. Petrography and geochemistry of the Carboniferous Ortokarnash manganese deposit in the Western Kunlun Mountains,Xinjiang Province,China:Implications for the depositional environment and the origin of mineralization[J]. Economic Geology,115(7):1559 − 1588.
[88] Zhang B,Cao J,Hu K,et al.,2022. Microbially-mediated Mn redox cycling and Mn carbonate precipitation in the Marinoan glacial aftermath,South China[J]. Global and Planetary Change,217:103950.
[89] Zhang B,Cao J,Liao Z,et al.,2021b. Dynamic biogeochemical cycling and mineralization of manganese of hydrothermal origin after the Marinoan glaciation[J]. Chemical Geology,584:120502. DOI: 10.5382/econgeo.4729
[90] 张律,颜玲,2015. 张家山锰矿地质特征及找矿标志[J]. 四川地质学报,35(2):201 − 204. DOI: 10.1016/j.gloplacha.2022.103950 Zhang L,Yan L,2015. Geological features and prospecting criteria for the Zhangjiashan Mn deposit[J]. Acta Geologica Sichuan,35(2):201 − 204 (in Chinese with English abstract). DOI: 10.1016/j.gloplacha.2022.103950
[91] Zhang X L,Chang C,Cui L H,et al.,2021a. Ecosystem reconstruction during the Cambrian explosion [J]. Paleontological Research,25(4),305 − 314. DOI: 10.1016/j.chemgeo.2021.120502
[92] 张律, 颜玲, 2015. 张家山锰矿地质特征及找矿标志[J]. 四川地质学报, 35(2): 201 − 204. DOI: 10.3969/j.issn.1006-0995.2015.02.010 Zhang Y N,Wang Z W,Yang X,et al.,2022. Petrological and Ni-Mo isotopic evidence for the genesis of the Ni-and Mo-sulfide extremely enriched early Cambrian black shale from Southwest China[J]. Chemical Geology,598:120812. DOI: 10.3969/j.issn.1006-0995.2015.02.010
[93] 钱赵伟,李金旺,李树雷,2022. 陕南天台山磷锰矿地质特征及成因分析[J]. 中国锰业,40(1):27 − 31+36. Zhao Q W,Li J W,Li S L,2022. Geological characteristics and genesis analysis of phosphorus-manganese ore in Tiantai Mountain,southern Shanxi[J]. Manganese Industry,40(1):27 − 31+36 (in Chinese with English abstract).
[94] 郑辉,2016. 四川观音梁子锰矿床地质特征及找矿意义[J]. 地质找矿论丛,31(3):317 − 324. DOI: 10.1016/j.chemgeo.2022.120812 Zheng H,2016. Geological characteristics of Guanyinliangzi manganese deposit in Sichuan and significance of its prospecting[J]. Contributions to Geology and Mineral Resources Research,31(3):317 − 324 (in Chinese with English abstract). DOI: 10.1016/j.chemgeo.2022.120812
[95] 钱赵伟, 李金旺, 李树雷, 2022. 陕南天台山磷锰矿地质特征及成因分析[J]. 中国锰业, 40(1): 27 − 31+36. Zheng M H,et al.,1993. Principles of ore geology [M]. Chengdu:Chengdu University of Science and Technology Press(in Chinese).
[96] 杨先光,李仕荣,杨永鹏,等,2016. 四川省锰矿成矿规律及资源评价[M]. 北京:科学出版社. DOI: 10.6053/j.issn.1001-1412.2016.03.001 Zheng H, 2016. Geological characteristics of Guanyinliangzi manganese deposit in Sichuan and significance of its prospecting[J]. Contributions to Geology and Mineral Resources Research, 31(3): 317 − 324. DOI: 10.6053/j.issn.1001-1412.2016.03.001
[97] 曾良鍷,吴荣森,罗代锡,等,1992. 四川省寒武纪岩相古地理及沉积层控矿产[M]. 成都:四川科学技术出版社. [98] 郑明华,等,1993. 矿床地质原理[M]. 成都:成都科技大学出版社. Zheng M H, et al., 1993. Principles of ore geology [M]. Chengdu: Chengdu University of Science and Technology Press(in Chinese).
-
其他相关附件
-
DOCX格式
万益平等-沉积与特提斯地质-2025-附表 点击下载(53KB)
-