• 中文核心期刊
  • 中国科技核心期刊
  • CSCD收录期刊
  • 美国《化学文摘》收录期刊
  • Scopus数据库收录期刊
高级检索

西藏措勤尼雄矿田滚纠铁矿磁铁矿元素地球化学特征及对成矿作用的制约

李俊, 刘函, 苟正彬, 崔浩杰

李俊, 刘函, 苟正彬, 崔浩杰. 西藏措勤尼雄矿田滚纠铁矿磁铁矿元素地球化学特征及对成矿作用的制约[J]. 沉积与特提斯地质, 2019, 39(2): 14-26.
引用本文: 李俊, 刘函, 苟正彬, 崔浩杰. 西藏措勤尼雄矿田滚纠铁矿磁铁矿元素地球化学特征及对成矿作用的制约[J]. 沉积与特提斯地质, 2019, 39(2): 14-26.
LI Jun, LIU Han, GOU Zhengbin, CUI Haojie. Geochemistry and controls on the mineralization of the magnetite from the Gunjiu iron deposit in the Nyixung ore field, Coqen, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(2): 14-26.
Citation: LI Jun, LIU Han, GOU Zhengbin, CUI Haojie. Geochemistry and controls on the mineralization of the magnetite from the Gunjiu iron deposit in the Nyixung ore field, Coqen, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(2): 14-26.

西藏措勤尼雄矿田滚纠铁矿磁铁矿元素地球化学特征及对成矿作用的制约

基金项目: 

本文得到中国地质调查局项目(项目编号DD20190053、DD20160015)、国家自然科学基金(项目编号41773026和41303028)和四川省基金项目(项目编号2014JQ0025)的联合资助

详细信息
    作者简介:

    李俊(1987-),工程师,主要从事区域成矿学方面的研究。E-mail:cdlijunwonder@163.com

  • 中图分类号: P618.31

Geochemistry and controls on the mineralization of the magnetite from the Gunjiu iron deposit in the Nyixung ore field, Coqen, Xizang

  • 摘要: 尼雄矿田滚纠铁矿地处拉萨地块隆格尔-工布江达岩浆弧,是冈底斯成矿带中生代铁铜多金属成矿作用的典型代表。在详细的野外地质调查和室内研究基础上,分析了滚纠铁矿床磁铁矿的成因矿物学特征。电子探针测试和ICP-MS分析表明,磁铁矿主量元素具有富SiO2,贫TiO2、V2O5的特征;微量元素Ba、Ti相对亏损,Cs、U相对富集,Eu、Lu、Tb、Ho、Tm强烈亏损。磁铁矿的Ti-(V+Cr)和(Ti+V)-(Al+Mn)协变图显示氧逸度、温度对矿物元素含量有明显制约作用,同时w(TiO2)与w(CaO+MgO)、w(Na2O+K2O)表现出明显正相关关系,指示矽卡岩系统中流体-岩石相互作用是磁铁矿地球化学元素变化的主要控制因素。通过研究矿床中矿物生成顺序和磁铁矿中Ti、V元素特征并结合前人流体包裹体测温资料,认为矿区铁矿化阶段为高氧逸度的中高温环境,初步限定磁铁矿成矿温度为300~450℃。矿物的w(Ni)均值为8.98×10-6,Ni/Co比值<1(变化范围0.15~0.59),Ti/V比值为6.71~25.52,从矿物化学角度进一步印证滚纠铁矿的成矿物质来源于矿区中酸性岩浆流体系统。TiO2-Al2O3-(MgO+MnO)和(Ca+Al+Mn)-(Ti+V)等成因判别图解在矿区具有良好适用性,说明磁铁矿是矽卡岩矿床成矿过程的重要指示矿物。
    Abstract: The Gunjiu iron deposit in the Nyixung ore field, Coqen, Xizang is a representative iron deposit within the Mesozoic iron-copper polymetallic deposits in the Gangdise metallogenic zone. The genetic mineralogy of magnetite is dealt with on the basis of field geological investigation and mineralogical and petrological studies. The microprobe and ICP-MS analyses show that magnetite is characterized by the enrichment of the major elements SiO2 and depletion of TiO2 and V2O5, the depletion of the trace elements Ba and Ti, the enrichment of Cs and U, and highly depletion of Eu, Lu, Tb, Ho and Tm. The covariation diagrams of Ti vs. (V+Cr) and (Ti+V) vs. (Al+Mn) suggest the controlls of the oxygen fugacity (fO2) and temperatures on the element contents in magnetite. The positively correlation of w(TiO2) vs. w(CaO+MgO) and w(TiO2) vs. w(Na2O+K2O) also indicate that the fluid-rock interaction in the skarn systems may exert a major control on geochemical signatures of magnetite. The combination of mineral sequence, Ti and V elementary variations, and previous data for fluid inclusion temperature determinations have reflected that the mineralization was initiated in the intermediate- to high-temperature environments with high oxygen fugacity and mineralization temperatures of 300℃ to 450℃. The average w(Ni) value of 8.98×10-6, Ni/Co ratios of 0.15 to 0.59 (<1), and Ti/V ratios of 6.71 to 25.52 have disclosed that the ore-forming matter was originated from the intermediate to acidic magmatic fluid systems. The feasibility of the discriminant diagrams of TiO2-Al2O3-(MgO+MnO) and (Ca+Al+Mn) vs. (Ti+V) for the genetic interpretation of magnetite have provide the evidence that magnetite from the Gunjiu iron deposit may be an important indicator mineral in the mineralization processes of the skarn deposits.
  • [1] 辛洪波,曲晓明. 藏西措勤县日阿与斑(玢)岩有关的铜矿床的矿床地质特征与成矿时代[J]. 矿床地质,2006, 25(4):477-482.
    [2] 辛洪波,曲晓明,任立奎,等. 藏西措勤含铜岩系的物质来源与成因[J]. 地质学报,2007, 81(7):939-945.
    [3] 张晓倩,朱弟成,赵志丹,等. 西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义[J]. 岩石学报,2010, 26(6):1793-1804.
    [4] 于玉帅,高原,杨竹森,等. 西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征[J]. 岩石学报,2011, 27(7):1949-1960.
    [5] 于玉帅,杨竹森,刘英超,等. 西藏措勤尼雄矿田滚纠铁矿金云母矿物学特征及40Ar-39Ar年代学[J]. 岩石矿物学杂志,2012, 31(5):681-690.
    [6] 陈俊,王鹤年. 地球化学[M]. 北京:科学出版社,2004.
    [7]

    Dupuis C, Beaudoin G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(4):319-335.

    [8]

    Nadoll P, Angerer T, Mauk J L, et al. The chemistry of hydrothermal magnetite:A review[J]. Ore Geology Reviews, 2014, 61:1-32.

    [9]

    Hu H, Lentz D, Li J, et al. Reequilibration processes in magnetite from iron skarn deposits[J]. Economic Geology, 2015, 110(1):1-8.

    [10] 黄柯,朱明田,张连昌,等. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展,2017,32(3):262-275.
    [11]

    Huang X, Qi L, Meng Y. Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China[J]. Acta Geologica Sinica, 2014, 88(1):176-195.

    [12]

    Wark D A, Watson E B. Titani Q:A titanium-in-quartz geother-mometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6):743-754.

    [13]

    Keith M, Haase K M, Schwarz-Schampera U, et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents[J]. Geology, 2014, 42(8):699-702.

    [14]

    Reich M, Deditius A, Chryssoulis S, et al. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:A SIMS/EMPA trace element study[J]. Geochimica et Cosmochimica Acta, 2013, 104:42-62.

    [15] 金露英,秦克章,李光明,等. 大兴安岭北段岔路口斑岩Mo-热液脉状Zn-Pb成矿系统硫化物微量元素的分布、起源及其勘探指示[J]. 岩石学报,2015,31(8):2417-2434.
    [16]

    Nadoll P, Mauk J L, Hayes T S, et al. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States[J]. Economic Geology, 2012, 107(6):1275-1292.

    [17] 曹圣华,李德威,余忠珍,等. 西藏冈底斯尼雄超大型富铁矿的成矿地质特征[J]. 大地构造与成矿学,2007, 31(3):328-334.
    [18]

    McIntire W L. Trace element partition coefficients-a review of theory and applications to Geochim geology[J]. Cosmochim. Acta, 1963, 27:1209-1264.

    [19]

    Buddington A F, Lindsley D H. Iron titanium oxide minerals and synthetic equivalents[J]. Petrol., 1964, 5:310-357.

    [20]

    Mysen B O. High-pressure and high-temperature titanium solution mechanisms in silicate-saturated aqueous fluids and hydrous silicate melts[J]. Am. Mineral, 2012, 97:1241-1251.

    [21]

    Lu H Z, Liu Y M, Wang C L, et.al. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China[J]. Economic Geology, 2003, 98(5):955-974.

    [22]

    Baker T, Van Ryan AEC, Lang J R. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J]. Geology, 2004, 32(2):117-120.

    [23] 于玉帅,杨竹森,田世洪,等. 西藏尼雄矿田滚纠铁矿成矿作用机制:来自矿物学和稳定同位素证据[J]. 岩石学报,2013, 29(11):3815-3827.
    [24]

    Acosta-Góngora P, Gleeson S A, Samson I M, et.al. Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-U-W mineralization in the Great Bear magmatic zone, NWT, Canada[J]. Economic Geology, 2014, 109:1901-1928.

    [25]

    Canil D, Grondahl C, Lacourse T, et.al. Trace elements in magnetite from porphyry Cu-Mo-Au deposits in British Columbia, Canada[J]. Ore Geol. Rev., 2016, 72:1116-1128.

    [26]

    Tosdal R M, Dilles J H, Cooke D R. From source to sinks in auriferous magmatic hydrothermal porphyry and epithermal deposits[J]. Elements, 2009, 5:289-295.

    [27] 陈光远. 成因矿物学与找矿矿物学[M]. 重庆:重庆出版社, 1987.
    [28] 段超,李延河,袁顺达,等. 宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约[J]. 岩石学报, 2012, 28(1):243-257.
    [29] 侯林,丁俊,邓军,等. 滇中武定迤纳厂铁铜矿床磁铁矿元素地球化学特征及其成矿意义[J]. 岩石矿物学杂志, 2013, 32(2):154-166.
    [30] 朱维娜,王义天,王春龙,等. 新疆西天山松湖铁矿床磁铁矿成分特征及其成因[J]. 地球科学-中国地质大学学报, 2015, 40(10):1723-1741.
    [31] 李俊,丁俊,牛浩斌,等. 滇西北衙金多金属矿床磁铁矿元素地球化学特征及其对成矿作用的制约[J]. 矿床地质, 2016, 35(2):395-413.
    [32] 洪为,张作衡,蒋宗胜,等. 新疆西天山查岗诺尔铁矿床磁铁矿和石榴石微量元素特征对矿床成因的制约[J]. 岩石学报,2012, 28(7):2089-2102.
    [33] 张志欣,杨富全,罗五仓,等. 新疆阿尔泰乌吐布拉克铁矿床矽卡岩矿物特征及其地质意义[J]. 矿物岩石学杂志,2011, 30(2):276-280.
    [34]

    Frietsch D R, Perdahl J A. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types[J], Ore Geology Reviews, 1995, 9(6):489-510.

    [35]

    Sun X S,McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for the mantle composition and processes[A]. Saunders A D and Norry M J. Magmatism in Ocean Basins[C]. London:London Special Publication, 1989. 313-345.

    [36] 林师整. 磁铁矿矿物化学、成因及演化的探讨[J]. 矿物学报,1982, (3):166-174.
计量
  • 文章访问数:  440
  • HTML全文浏览量:  0
  • PDF下载量:  594
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-16
  • 修回日期:  2019-01-19
  • 发布日期:  2019-06-29

目录

    /

    返回文章
    返回