Characteristics and genesis of the mixed siliciclastic-carbonate successions in the Upper Sinian Dengying Formation in the Nanjiang region, Sichuan
-
摘要: 陆源碎屑和碳酸盐混积层系是一种沉积机理特殊而又有重要意义的沉积现象。四川南江新立村下震旦统灯影组剖面碎屑岩-碳酸盐岩混积层系发育良好。在该剖面上共识别出4类混积层系岩石组合类型:细砂岩-泥晶白云岩组合(Ⅰ)、粉砂岩-泥晶白云岩组合(Ⅱ)、粉细砂岩-含粉砂白云岩组合(Ⅲ)、含砾砂岩-白云岩组合(Ⅳ)。通过岩石类型、岩石组合特征的分析,显示出灯影组二段上部-三段由下向上发育混积中潮坪、潮下浅滩、潮道、低潮坪4种沉积亚相,而混积层系主要产出于混积中潮坪和潮道亚相。微量元素指示研究地层整体形成于氧化环境,但发生混积层位的形成环境相对缺氧。根据当时海平面变化和大地构造演化,认为灯影组陆源碎屑和碳酸盐混积层系的出现与桐湾运动玉幕之后海平面下降导致的陆源碎屑输入增强有关。Abstract: The mixed siliciclastic-carbonate successions represent a special type of depositional mechanisms and significant deposition. They are well developed in the Upper Sinian Dengying Formation in the Xinli section, Nanjiang region, Sichuan. Four lithologic associations have been distinguished, including (1) fine-grained sandstone-dolomicrite association; (2) siltstone-dolomicrite association; (3) silty sandstone-silty dolostone association, and (4) gravelly sandstone-dolostone association. Four sedimentary subfacies types are also recognized on the basis of the rock types and associations, including the mesotidal flat, subtidal shoal, tidal channel and lower tidal flat subfacies. The mixed siliciclastic-carbonate successions occur primarily in the mesotidal flat and tidal channel subfacies. The trace element data show that the studied strata are generally formed in the oxidation environments. However the mixed siliciclastic-carbonate successions are formed in the anoxic environments. In the light of the sea-level changes and tectonic evolution, the development of the mixed siliciclastic-carbonate successions in the Dengying Formation in the Xinli section, Nanjiang region, Sichuan may be companied by the siliciclastic input caused by the negative movements following the phase I of the Tongwan Movement.
-
Keywords:
- mixed siliciclastic-carbonate succession /
- Dengying Formation /
- Nanjiang /
- Sinian
-
-
[1] 杨朝青,沙庆安. 云南曲靖中泥盆统曲靖组的沉积环境:一种陆源碎屑与海相碳酸盐的混合沉积[J]. 沉积学报,1990,8(2):59-66. [2] 董桂玉, 陈洪德, 何幼斌,等. 陆源碎屑与碳酸盐混合沉积研究中的几点思考[J]. 地球科学进展, 2007, 22(9):931-939. [3] Mount J. Mixed siliciclastic and carbonate sediments:a proposed first-order textural and compositional classification[J]. Sedimentology, 1985, 32(3):435-442.
[4] 张锦泉, 叶红专. 论碳酸盐与陆源碎屑的混合沉积[J]. 成都地质学院学报,1989,16(2):87-92. [5] Zecchin M,Catuneanu O. High-resolution sequence stratigraphy of clastic shelves VI:Mixed siliciclastic-carbonate systems[J]. Marine and Petroleum Geology, 2017, 88:712-723.
[6] Chiarella D, Longhitano S G. Distinguishing depositional environments in shallow-water mixed, bio-siliciclastic deposits on the basis of the degree of Heterolithic Segregation (Gelasian, Southern Italy)[J]. Journal of Sedimentary Research, 2012, 82(11-12):969-990.
[7] 郭福生,严兆彬,杜杨松. 混合沉积、混积岩和混积层系的讨论[J]. 地学前缘,2003,10(3):68-68. [8] 江茂生,沙庆安. 碳酸盐与陆源碎屑混合沉积体系研究进展[J]. 地球科学进展,1995,10(6):551-554. [9] 郭书元,张广权,陈舒薇. 陆表海碎屑岩-碳酸盐岩混积层系沉积相研究-以鄂尔多斯东北部大牛地气田为例[J]. 古地理学报,2009,11(6):611-627. [10] 郑荣才,周刚,董霞,等. 龙门山甘溪组谢家湾段混积相和混积层序地层学特征[J]. 沉积学报, 2010,28(1):33-41. [11] 冯进来,胡凯,曹剑,等. 陆源碎屑与碳酸盐混积岩及其油气地质意义[J]. 高校地质学报,2011, 17(2):297-307. [12] Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(12):432-435.
[13] 张雄华. 混积岩的分类和成因[J]. 地质科技情报,2000,19(4):31-34. [14] 伏美燕,张哨楠,赵秀,等. 塔里木盆地巴楚-麦盖提地区石炭系混合沉积研究[J]. 古地理学报, 2012, 14(2):155-164. [15] 郭福生. 浙江江山藕塘底组陆源碎屑与碳酸盐混合沉积特征及其构造意义[J]. 沉积学报,2004,22(1):136-141. [16] Borer J M, Harris P M. Depositional Facies and Model for Mixed Siliciclastics and Carbonates of the Yates Formation, Permian Basin[J]. Core Workshop Notes,1991,(15):1-133.
[17] 高岗,杨尚儒,屈童. 混合沉积研究现状及其与油气富集的关系[J]. 地质科技情报,2018,37(6):82-88. [18] Barnaby R J, Ward W B. Outcrop Analog for Mixed Siliciclastic-Carbonate Ramp Reservoirs-Stratigraphic Hierarchy, Facies Architecture, and Geologic Heterogeneity:Grayburg Formation, Permian Basin, U. S. A.[J]. Journal of Sedimentary Research, 2007, 77(1-2):34-58.
[19] 杜思清,魏显贵,刘援朝,等. 汉南-米仓山区叠加东西向隆坳的北东向推覆构造[J]. 成都理工大学学报(自科科学版),1998,25(3):367-374. [20] 肖安成,魏国齐, 沈中延,等. 扬子地块与南秦岭造山带的盆山系统与构造耦合[J]. 岩石学报,2011,27(3):601-611. [21] 魏显贵, 杜思清, 何政伟,等. 米仓山地区构造演化[J]. 矿物岩石,1997,17(s1):107-113. [22] 魏显贵,杜思清,刘援朝,等. 米仓山推覆构造的结构样式及演化特征[J]. 矿物岩石,1997, 17(s1):114-122. [23] 邓胜徽, 樊茹, 李鑫,等. 四川盆地及周缘地区震旦(埃迪卡拉)系划分与对比[J]. 地层学杂志, 2015,39(3):239-254. [24] 刘宏,罗思聪, 谭秀成,等. 四川盆地震旦系灯影组古岩溶地貌恢复及意义[J]. 石油勘探与开发, 2015, 42(3):283-293. [25] 汪凯明,罗顺社. 碳酸盐岩地球化学特征与沉积环境判别意义-以冀北坳陷长城系高于庄组为例[J]. 石油与天然气地质,2009,(3):343-349. [26] 常华进,储雪蕾,冯连君,等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1):91-99. [27] 汪凯明, 罗顺社. 海相碳酸盐岩锶同位素及微量元素特征与海平面变化[J]. 海洋地质与第四纪地质,2009,29(6):51-59. [28] 马志鑫,李波,刘喜停,等. 黔东下寒武统清虚洞组地球化学特征及其对沉积环境演化的指示[J]. 地质科技情报,2015, 34(2):71-77. [29] 颜佳新,张海清. 古氧相——一个新的沉积学研究领域[J]. 地质科技情报,1996,15(3):7-14. [30] Jones B, Manning D A. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1-4):111-129.
[31] 林治家,陈多福,刘芊. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报,2008,27(1):72-80. [32] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies:an update[J]. Chemical Geology, 2006, 232(1):12-32.
[33] 梁文君,肖传桃,肖凯,等. 藏北安多晚侏罗世古环境、古气候与地球化学元素关系研究[J]. 中国地质,2015,42(4):1079-1091. [34] 王随继,黄杏珍,妥进才. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报,1997,15(1):65-70. [35] Algeo T J, Tribovillard N. Environmental analysis of paleocea nographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3-4):211-225.
[36] 郑静静,刘桂梅,高姗. 海洋缺氧现象的研究进展[J]. 海洋预报,2016,33(4):88-97. [37] 王东,王国芝. 四川南江灯影组白云岩葡萄状构造成因分析[J]. 四川地质学报,2010,30(4):454-456. [38] 吴德超,魏显贵,何政伟,等. 1:5万关坝幅地质图说明书,1995. [39] 邢凤存,侯明才,林良彪,等. 四川盆地晚震旦世-早寒武世构造运动记录及动力学成因讨论[J]. 地学前缘,2015,22(1):115-125. [40] Tucker M. Storm-surge Sandstones and the Deposition of Interbedded Limestone:Late Precambrian, Southern Norway[M]. Berlin:Springer Berlin Heidelberg, 1982:
[41] Markello J R, Read J F. Carbonate ramp-to-deeper shale transitions of an Upper Cambrian intrashelf basin, Nolichucky Formation, Southwest Virginia Appalachians[J]. Sedimentology, 2010, 28(4):573-597.
[42] Yose L A, Heller P L. Sea-level control of mixed carbonate-siliciclastic, gravity-flow deposition:Lower part of the Keeler Canyon Formation (Pennsylvanian), southeastern California[J]. Geological Society of America Bulletin, 1989, 101(3):427-439.
[43] Zonneveld J P, Gingras M K, Beatty T W, et al., Chapter 26-Mixed Siliciclastic/Carbonate Systems, in Developments in Sedimentology[M]. vol. 64, D. Knaust and R. G. Bromley. Elsevier, 2012.807-833.
[44] 龚文平,肖传桃,胡明毅,等. 藏北安多-巴青地区侏罗纪含礁层系岩相及沉积环境[J]. 地质科学,2006,41(3):479-488. [45] 汪泽成,姜华,王铜山,等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发,2014,41(3):305-312. [46] 罗贝维,贾承造,魏国齐,等. 四川盆地上震旦统灯影组风化壳古岩溶特征及模式分析[J]. 中国石油大学学报自然科学版,2015,(3):8-19. [47] 杨暹和,陈远德. 西南地区地层总结-震旦系[M]. 重庆:重庆出版社,1981. [48] 王东. 南江地区灯影组白云岩优质储层形成机制研究[D]. 成都:成都理工大学,2010. [49] 武赛军,魏国齐,杨威,等. 四川盆地桐湾运动及其油气地质意义[J]. 天然气地球科学,2016,27(1):60-70. [50] 冯伟明,谢渊,李嵘,等. 川东南-黔西北桐湾芋幕岩溶古地貌恢复[J]. 地质论评,2017,63(5):1270-1280.
计量
- 文章访问数: 518
- HTML全文浏览量: 0
- PDF下载量: 623