Genesis of Himalayan leucogranite and its potentiality of rare-metal mineralization
-
摘要: 喜马拉雅淡色花岗岩世界瞩目,具有重要的理论研究和找矿意义,但是其成因争议较大。本文统计了两千余件样品的全岩主微量地球化学、Sr-Nd-Pb-Hf同位素、锆石/独居石/磷钇矿等副矿物原位U-Pb年龄和锆石Hf同位素等,试图全面地总结喜马拉雅淡色花岗岩的研究进展和现状。喜马拉雅淡色花岗岩分为南北两带,北带花岗岩主要出露于特提斯喜马拉雅和片麻岩穹隆中,而南带花岗岩主要发育在高喜马拉雅顶部和东-西构造结中。从北往南,成岩时代逐渐变新;南北两带均以二云母花岗岩和(石榴石-电气石)白云母花岗岩为主,两期(始新世和中新世)中-基性岩脉和埃达克质岩主要在北带中发育。新生代岩浆活动分为5个阶段:49~40 Ma、39~29 Ma、28~15 Ma、14~7 Ma、6~0.7 Ma,分别主要与新特提斯洋壳板片断离、印度陆壳板片的低角度俯冲、断离或回撤、南北向撕裂(裂谷)和东西构造结的快速隆升有关。喜马拉雅淡色花岗岩起源于高喜马拉雅杂岩系的不一致(不平衡)部分熔融,并经历了矿物分离结晶的高分异演化。淡色花岗岩属于强过铝质岩石,具有高Si、K、Na,低Ca、Fe、Mg、Ti、Mn,高的Rb/Sr、Y/Ho值,低的Th/U、Nb/Ta、Zr/Hf、K/Rb值,稀土元素总量较低,负Eu异常明显的地球化学特征。随着成岩时代变新,Sr-Nd-Pb-Hf等同位素都指示岩浆源区中古老地壳物质的占比逐步增加。喜马拉雅淡色花岗岩/伟晶岩中Li、Be、W、Sn、Ta、Cs和Rb等稀有元素的富集系数大于10,伟晶岩属于典型的LCT型伟晶岩。喜马拉雅新生代淡色花岗岩带有望成为一条新的世界级的Li-Be-Sn-W-Ta稀有金属成矿带。Abstract: The Himalayan leucogranite attracts the attention of the world and has important theoretical and prospecting significances, but its genesis is controversial. In this paper, the geochemistry of whole rock main and trace elements, Sr-Nd-Pb-Hf isotopes, in-situ U-Pb ages of zircon/monazite/xenotime and other accessory minerals, and zircon Hf isotopes of secondary minerals from more than 2000 samples have been reviewed, in order to comprehensively summarize the research progresses and status of Himalayan leucogranites. The Himalayan leucogranites are divided into two zones.The northern zone is mainly exposed in the Tethyan Himalayas and gneiss dome, and the southern zone is mainly developed in the top of the Great Himalayan Copmlex and the Western-Eastern Himalayan Syntaxis. From north to south, the petrogenetic ages become younger gradually. There are two-mica granites and (garnet-tourmaline) muscovite granites in the northern and southern zones, and two stages (Eocene and Miocene) intermediate-basic dikes and adakite rocks are mainly developed in the northern zone. The Cenozoic magmatic activity can be divided into five stages: 49-40 Ma, 39-29 Ma, 28-15 Ma, 14-7 Ma and 6-0.7 Ma, which are mainly related to the separation of the New Tethyan oceanic plate, the low angle subduction, detachment or retraction, the north-south tearing (north-south-trending rift) of the Indian continental plate, and the rapid uplift of the Himalayan syntaxes, respectively. The Himalayan leucogranites originated from the incongruent (disequilibrium) partial melting of the Great Himalayan Complex and underwent highly differentiated evolution of mineral separation crystallization. The leucogranites are characterized by high Si, K, Na, low Ca, Fe, Mg, Ti, Mn, strong peraluminite, low total rare earth elements, obvious negative Eu anomaly, high Rb/Sr, Y/Ho values, and low Th/U, Nb/Ta, Zr/Hf, K/Rb values. As the petrogenetic ages become younger, the Sr-Nd-Pb-Hf isotopes show that the proportion of older crustal material in the magmatic source area increases gradually. The enrichment coefficients of rare elements such as Li, Be, W, Sn, Ta, Cs and Rb in the Himalayan leucogranite are greater than 10 relative to the total crustal value, and they belong to LCT-type pegmatite. The Cenozoic leucogranite belt of the Himalayas is expected to be a new world-class Li-Be-Sn-W-Ta rare metal metallogenic belt.
-
Keywords:
- leucogranite /
- highly fractionated granite /
- Cenozoic /
- rare-metal mineralization /
- Himalaya
-
-
Aikman A B,Harrison T M,Hermann J,2012a.Age and thermal history of Eo-and Neohimalayan granitoids,eastern Himalaya[J].Journal of Asian Earth Sciences,51:85-97.
Aikman A B,Harrison T M,Hermann J,2012b.The origin of Eo-andNeo-himalayan granitoids,Eastern Tibet[J].Journal of Asian Earth Sciences,58:143-157.
Allègre C,Othman D,1980.Nd-Sr isotopic relationship in granitoid rocks and continental crust development:a chemical approach to orogenesis[J].Nature,286:335-342.
Ayres M,Harris N,1997.REE fractionation and Nd-isotope disequilibrium during crustal anatexis:constraints from Himalayan leucogranites[J].Chemical Geology,139(1):249-269.
Ballouard C,Poujol M,Boulvais P,et al.,2016.Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J].Geology,44(3):231-234.
Barbarin B,1999.A review of the relationships between granitoid types,their origins and their geodynamic environments[J].Lithos,46(3):605-626.
Barbey P,Brouand M,Le Fort P,et al.,1996.Granite-migmatite genetic link:the example of the Manaslu granite and Tibetan Slab migmatites in central Nepal[J].Lithos,38(1):63-79.
Bartoli O,Acosta-Vigil A,Cesare B,et al.,2019.Geochemistry of Eocene-Early Oligocene low-temperature crustal melts from Greater Himalayan Sequence (Nepal):a nanogranitoid perspective[J].Contributions to Mineralogy and Petrology,174(10):82.
Bau M,1996.Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho,Zr/Hf,and lanthanide tetrad effect[J].Contributions to Mineralogy and Petrology,123(3):323-333.
Bird P,1978.Initiation of intracontinental subduction in the Himalaya[J].Journal of Geophysical Research:Solid Earth,83(B10):4975-4987.
Brubacher A D,Larson K P,Cottle J M,et al.,2021.Progressive development of E-W extension across the Tibetan plateau:A case study of the Thakkhola graben,west-central Nepal[J].International Geology Review,63(15):1900-1919.
Burchfiel B C,Chen Z,Hodges K V,et al.,1992.The South Tibetan detachment system,Himalayan orogen:Extension contemporaneous with and parallel to shortening in a collisional mountain belt[J].Geological Society of America Special Papers,269:1-41.
Burchfiel B C,Royden L H,1985.North-south extension within the convergent Himalayan region[J].Geology,13(10):679-682.
Burg J P,Bouilhol P,2019.Timeline of the South-Tibet-Himalayan belt:the geochronological record of subduction,collision,and underthrusting from zircon and monazite U-Pb ages[J].Canadian Journal of Earth Sciences,56(12):1318-1332.
Burg J P,Brunel M,Gapais D,et al.,1984.Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China)[J].Journal of Structural Geology,6(5):535-542.
Butler R W H,2019.Tectonic evolution of the Himalayan syntaxes:the view from Nanga Parbat[J].Geological Society,London,Special Publications,483:215-254.
Cao H W,Huang Y,Li G M,et al.,2018.Late Triassic sedimentary records in the northern Tethyan Himalaya:tectonic link with Greater India[J].Geoscience Frontiers,9(1):273-291.
Cao H W,Li G M,Zhang R Q,et al.,2021.Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya:Evidence from geology,geochronology,fluid inclusions and multiple isotopes[J].Gondwana Research,92:72-101.
Cao H W,Li G M,Zhang Z,et al.,2020.Miocene Sn polymetallic mineralization in the Tethyan Himalaya,southeastern Tibet:A case study of the Cuonadong deposit[J].Ore Geology Reviews,119:103403.
Cao H W,Zou H,Bagas L,et al.,2019.The Laqiong Sb-Au deposit:Implications for polymetallic mineral systems in the Tethys-Himalayan zone of southern Tibet,China[J].Gondwana Research,72:83-96.
Carosi R,Montomoli C,Iaccarino S,2018.20 years of geological mapping of the metamorphic core across Central and Eastern Himalayas[J].Earth-Science Reviews,177:124-138.
Carosi R,Montomoli C,Langone A,et al.,2015.Eocene partial melting recorded in peritectic garnets from kyanite-gneiss,Greater Himalayan Sequence,central Nepal[J].Geological Society,London,Special Publications,412:111-129.
Carosi R,Montomoli C,Rubatto D,et al.,2013.Leucogranite intruding the South Tibetan Detachment in western Nepal:implications for exhumation models in the Himalayas[J].Terra Nova,25(6):478-489.
erny P,Blevin P L,Cuney M,et al.,2005.Granite-Related Ore Deposits[C]//One Hundredth Anniversary Volume,Society of Economic Geologists.337-370.
Chen H,Hu G Y,Zeng L S,et al.,2022.Miocene crustal anatexis of Paleozoic orthogneiss in the Zhada area,western Himalaya[J].Acta Geologica Sinica-English Edition.https://doi.org/10.1111/1755-6724.14897
Chen J,Gaillard F,Villaros A,et al.,2018.Melting conditions in the modern Tibetan crust since the Miocene[J].Nature Communications,9(1):3515.
Chen S S,Fan W M,Shi R D,et al.,2021.The Tethyan Himalaya igneous province:Early melting products of the Kerguelen mantle plume[J].Journal of Petrology,62(11):egab069.
Chen S,Zhang B,Zhang J,et al.,2022.Tectonic transformation from orogen-perpendicular to orogen-parallel extension in the North Himalayan Gneiss Domes:Evidence from a structural,kinematic,and geochronological investigation of the Ramba gneiss dome[J].Journal of Structural Geology,155:104527.
Chen X,Zhang G,Gao R,et al.,2021.Petrogenesis of highly fractionated leucogranite in the Himalayas:The Early Miocene Cuonadong example[J].Geological Journal,56(7):3791-3807.
Cheng L,Zhang C,Yang X,2020.Petrogenesis of deformed tourmaline leucogranite in the Gurla Mandhata metamorphic core complex,Southwestern Tibet[J].Lithos,364-365:105533.
Clemens J D,Stevens G,2012.What controls chemical variation in granitic magmas?[J].Lithos,134-135:317-329.
Copeland P,Parrish R R,Harrison T M,1988.Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics[J].Nature,333:760.
Cottle J,Lederer G,Larson K,2019.The Monazite Record of Pluton Assembly:Mapping Manaslu Using Petrochronology[J].Chemical Geology,530:119309.
Cottle J M,Searle M P,Jessup M J,et al.,2015.Rongbuk re-visited:Geochronology of leucogranites in the footwall of the South Tibetan Detachment System,Everest Region,Southern Tibet[J].Lithos,227:94-106.
Crowley J L,Waters D J,Searle M P,et al.,2009.Pleistocene melting and rapid exhumation of the Nanga Parbat massif,Pakistan:Age and P-T conditions of accessory mineral growth in migmatite and leucogranite[J].Earth and Planetary Science Letters,288(3-4):408-420.
Dai Z,Dong L,Li G,et al.,2020.Crustal thickening prior to 43 Ma in the Himalaya:Evidence from lower crust-derived adakitic magmatism in Dala,eastern Tethyan Himalaya,Tibet[J].Geological Journal,55(5):4021-4046.
Debon F,Le Fort P,1983.A chemical-mineralogical classification of common plutonic rocks and associations[J].Transactions of the Royal Society of Edinburgh:Earth Sciences,73(3):135-149.
Defant M J,Drummond M S,1990.Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature,347(6294):662-665.
Ding H,Kohn M J,Zhang Z,2021.Long-lived (ca.22-24 Myr) partial melts in the eastern Himalaya:Petrochronologic constraints and tectonic implications[J].Earth and Planetary Science Letters,558:116764.
Drummond M S,Defant M J,1990.A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting:Archean to modern comparisons[J].Journal of Geophysical Research:Solid Earth,95(B13):21503-21521.
Dyck B,Waters D J,St-Onge M R,et al.,2020.Muscovite dehydration melting:Reaction mechanisms,microstructures,and implications for anatexis[J].Journal of Metamorphic Geology,38(1):29-52.
Fan J J,Wang Q,Li J,et al.,2021.Boron and molybdenum isotopic fractionation during crustal anatexis:Constraints from the Conadong leucogranites in the Himalayan Block,South Tibet[J].Geochimica et Cosmochimica Acta,297:120-142.
Fan Y,Zhang J,Lin C,et al.,2021.The Miocene granitic magmatism constrains the early E-W extension in the Himalayan Orogen:A case study of Kung Co leucogranite[J].Lithos:106295.
Gao L E,Zeng L,Zhao L,et al.,2021.Geochemical behavior of rare metals and high field strength elements during granitic magma differentiation:A recordfrom the Borong and Malashan Gneiss Domes,Tethyan Himalaya,southern Tibet[J].Lithos,398-399:106344.
Gao L E,Zeng L S,2014.Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome,southern Tibet[J].Geochimica et Cosmochimica Acta,130:136-155.
Gao L E,Zeng L S,Asimow P D,2017.Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources:The Himalayan leucogranites[J].Geology,45:39-42.
Gao L E,Zeng L S,Gao J H,et al.,2016.Oligocene crustal anatexis in the Tethyan Himalaya,southern Tibet[J].Lithos,264:201-209.
Gao P,Yakymchuk C,Zhang J,et al.,2022.Preferential dissolution of uranium-rich zircon can bias the hafnium isotope compositions of granites[J].Geology,50:336-340.
Gao P,Zheng Y F,Mayne M J,et al.,2021a.Miocene high-temperature leucogranite magmatism in the Himalayan orogen[J].GSA Bulletin,133(3-4):679-690.
Gao P,Zheng Y F,Yakymchuk C,et al.,2021b.The effects of source mixing and fractional crystallization on the composition of Eocene granites in the Himalayan orogen[J].Journal of Petrology,62(7):egab037.
Gao P,Zheng Y F,Zhao Z F,et al.,2021c.Source diversity in controlling the compositional diversity of the Cenozoic granites in the Tethyan Himalaya[J].Lithos,388-389:106072.
Goscombe B,Gray D,Foster D A,2018.Metamorphic response to collision in the Central Himalayan Orogen[J].Gondwana Research,57:191-265.
Gou Z,Dong X,Wang B,2019.Petrogenesis and Tectonic Implications of the Paiku Leucogranites,Northern Himalaya[J].Journal of Earth Science,30(3):525-534.
Gou Z B,Zhang Z M,Dong X,et al.,2016.Petrogenesis and tectonic implications of the Yadong leucogranites,southern Himalaya[J].Lithos,256-257:300-310.
Groppo C,Rolfo F,Indares A,2012.Partial melting in the higher himalayan crystallines of eastern Nepal:the effect of decompression and implications for the'channel flow'Model[J].Journal of Petrology,53(5):1057-1088.
Guo Z,Wilson M,2012.The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting[J].Gondwana Research,22:360-376.
Hamet J,Alleègre C J,1976.Rb-Sr systematics in granite from central Nepal (Manaslu):Significance of the Oligocene age and high 87Sr/86Sr ratio in Himalayan orogeny[J].Geology,4(8):470-472.
Hammerli J,Kemp A I S,2021.Combined Hf and Nd isotope microanalysis of co-existing zircon and REE-rich accessory minerals:High resolution insights into crustal processes[J].Chemical Geology,581:120393.
Harris N,Ayres M,1998.The implications of Sr-isotope disequilibrium for rates of prograde metamorphism and melt extraction in anatectic terrains[J].Geological Society,London,Special Publications,138(1):171-182.
Harris N,Ayres M,Massey J,1995.Geochemistry of granitic melts produced during the incongruent melting of muscovite:Implications for the extraction of Himalayan leucogranite magmas[J].Journal of Geophysical Research:Solid Earth,100(B8):15767-15777.
Harris N,Massey J,1994.Decompression and anatexis of Himalayan metapelites[J].Tectonics,13(6):1537-1546.
Harris N,Massey J,Inger S,1993.The role of fluids in the formation of High Himalayan leucogranites[J].Geological Society,London,Special Publications,74(1):391-400.
Harris N,Vance D,Ayres M,2000.From sediment to granite:timescales of anatexis in the upper crust[J].Chemical Geology,162(2):155-167.
Harris N B W,Caddick M,Kosler J,et al.,2004.The pressure-temperature-timepath of migmatites from the Sikkim Himalaya[J].Journal of Metamorphic Geology,22(3):249-264.
Harris N B W,Inger S,1992.Trace element modelling of pelite-derived granites[J].Contributions to Mineralogy and Petrology,110(1):46-56.
Harris N B W,Pearce J A,Tindle A G,1986.Geochemical characteristics of collision-zone magmatism[J].Geological Society,London,Special Publications,19(1):67-81.
Harrison T M,McKeegan K D,Le Fort P,1995.Detection of inherited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe dating:Crystallization age and tectonic implications[J].Earth and Planetary Science Letters,133(3):271-282.
He S X,Liu X C,Yang L,et al.,2021.Multistage magmatism recorded in a single gneiss dome:Insights from the Lhagoi Kangri leucogranites,Himalayan orogen[J].Lithos,(398-399):106222.
Hodges K,Bowring S,Davidek K,et al.,1998.Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges[J].Geology,26(6):483-486.
Hodges K V,2000.Tectonics of the Himalaya and southern Tibet from two perspectives[J].Geological Society of America Bulletin,112(3):324-350.
Hodges K V,Parrish R R,Housh T B,et al.,1992.Simultaneous Miocene extension and shortening in the Himalayan orogen[J].Science,258(5087):1466-1470.
Hopkinson T,Harris N,Roberts N,et al.,2020.Evolution of the melt source during protracted crustal anatexis;an example from the Bhutan Himalaya[J].Geology,48(1):87-91.
Hopkinson T N,Harris N B W,Warren C J,et al.,2017.The identification and significance of pure sediment-derived granites[J].Earth and Planetary Science Letters,467:57-63.
Horton F,Lee J,Hacker B,et al.,2015.Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting:New geochronology of Gianbul dome,northwestern India[J].Geological Society of America Bulletin,127(1-2):162-180.
Hou Z Q,Zheng Y C,Zeng L S,et al.,2012.Eocene-Oligocene granitoids in southern Tibet:Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen[J].Earth and Planetary Science Letters,349-350:38-52.
Hu X M,Garzanti E,Wang J G,et al.,2016.The timing of India-Asia collision onset-facts,theories,controversies[J].Earth-Science Reviews,160:264-299.
Huang C,Zhao Z,Li G,et al.,2017.Leucogranites in Lhozag,southern Tibet:Implications for the tectonic evolution of the eastern Himalaya[J].Lithos,294-295:246-262.
Huang F,Bai R,Deng G,et al.,2021.Barium isotope evidence for the role of magmatic fluids in the origin of Himalayan leucogranites[J].Science Bulletin,66:2329-2336.
Huang Y,Cao H W,Li G M,et al.,2018.Middle-late Triassic bimodal intrusive rocks from the Tethyan Himalaya in South Tibet:Geochronology,petrogenesis and tectonic implications[J].Lithos,318-319:78-90.
Iaccarino S,Montomoli C,Carosi R,et al.,2017.Pressure-temperature-deformation-time constraints on the South Tibetan Detachment System in the Garhwal Himalaya (NW India)[J].Tectonics,36(11):2281-2304.
Imayama T,Arita K,Fukuyama M,et al.,2019.1.74 Ga crustal melting after rifting at the northern Indian margin:investigation of mylonitic orthogneisses in the Kathmandu area,central Nepal[J].International Geology Review,61(10):1207-1221.
计量
- 文章访问数: 135
- HTML全文浏览量: 11
- PDF下载量: 149