Zircon U-Pb isotopic geochronology, geochemistry and geological significance of the quartz diorite porphyrite in Yangxie gold ore district, East Qinling
-
摘要: 杨斜中型金矿床是东秦岭杨斜-丰北河地区典型的石英脉型金矿床,成矿与区内石英闪长玢岩密切相关,具中高温蚀变特征及矿物组成。LA-ICP-MS锆石U-Pb测年结果表明,石英闪长玢岩锆石206Pb/238U加权平均年龄为149.5±2.7 Ma,谐和年龄为149.5±2.1 Ma,属晚侏罗世。岩石地球化学研究显示,石英闪长玢岩具有高SiO2(65.53%~65.76%)、高Al2O3(15.65%~15.87%)、富碱(N2O+K2O=8.07%~8.30%)及贫MgO(1.37%~1.40%)特征,属于高钾钙碱性准铝质系列岩石;相对富集Rb、Ba、K、Pb、Sr等大离子亲石元素和LREE,亏损Nb、Ta、Ti等高场强元素和HREE;其高Sr、高Sr/Y、低Y和低Yb值及正Eu异常等特征参数,与典型埃达克质岩一致,岩浆应起源于加厚下地壳的部分熔融。综合研究认为,杨斜金矿属岩浆期后热液型金矿床,成岩成矿时代一致,形成于秦岭造山带晚侏罗世-早白垩世陆内俯冲向伸展转换的构造环境。Abstract: The middle-sized Yangxie gold deposit is a typical quartz-vein type gold deposit in Yangxie-Fengbeihe area, East Qinling. Its mineralization is closely related to quartz diorite porphyrite, which has the characteristics of medium-high temperature alteration and mineral composition. LA-ICP-MS zircon U-Pb dating indicates that the weighted average 206Pb/238U age and concordance age of zircons from the quartz diorite porphyrite are 149.5±2.7 Ma and 149.5±2.1 Ma respectively, suggesting the Late Jurassic. Petrogeochemical studies show that the quartz diorite porphyrite belongs to high K calc-alkaline metaluminous rocks which are characterized by high contents of SiO2(65.53%~65.76%), Al2O3(15.65%~15.87%) and alkali (Na2O+K2O=8.07%~8.30%) but low MgO content (1.37%~1.40%). These rocks are relatively enriched in LILE (Rb, Ba, K, Pb, Sr) and LREE, and depleted in HFSE (Nb, Ta, Ti) and HREE. Meanwhile, their characteristic parameters of high Sr values, high Sr/Y rations, low Y and Yb values as well as positive Eu anomalies are consistent with those of typical adakitic rocks, indicating that the parental magma was probably derived from partial melting of the thickened lower crust. The comprehensive studies suggest that the Yangxie gold deposit is a magmatic-hydrothermal gold deposit, which was formed in the transitional environment of intracontinental subduction to extension of the Qinling orogenic belt from Late Jurassic to Early Cretaceous.
-
Keywords:
- East Qinling /
- Yangxie gold deposit /
- quartz diorite porphyrite /
- zircon U-Pb dating /
- geochemistry
-
-
Castillo P R, Janney P E, Solidum R U, 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 134(1): 33-51.
Chen Y J, Li C, Zhang J, et al., 2000. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type[J]. Science in China (Series D), 43(Supp.): 82-94.
Chung S L, Liu D Y, Ji J Q, et al., 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11): 1021-1024.
Defant M J, Drummond M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662-665.
Dong Y P, Santosh M, 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J], Gondwana Research, 29(1): 1-40.
Drummond M S, Defant M J, 1990. A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons[J]. Journal of Geophysical Research, 95(B13): 21503-21521.
Gao S, Rudnick R L, Yuan H L, et al., 2004. Recycling lower continental crust in the North China craton[J]. Nature,432(7019): 892-897.
Guo F, Nakamuru E, Fan W M, et al., 2007. Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China[J]. Journal of Petrology, 48(4): 661-692.
Han Y G, Li X H, Zhang S H, et al., 2007. Single grain Rb-Sr dating of euhedral and cataclastic pyrite form the Qiyugou gold deposit in western Henan, central China[J]. Chinese Science Bulletin, 52(13): 1820-1826.
Harris N B W, Pearce J A, Tindle A G, 1986. Geochemical characteristics of collision-zone magmatism[C]// Coward M P, Ries A C. Collision Tectonics. Geological Society, Landon, Special Publication, 67-81.
Hoskin P W O, Ireland T R, 2000. Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology, 28(7): 627-630.
Hoskin P W O, Schaltegger U, 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53(1): 27-62.
Hou Z Q, Gao Y F, Qu X M, et al., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 220(1-2): 139-155.
Hu F Y, Liu S W, Ducea M N, et al., 2017. The geochemical evolution of the granitoid rocks in the South Qinling Belt: Insights from the Dongjiangkou and Zhashui intrusions, central China[J]. Lithos, 278-281: 195-214.
Li J W, Li Z K, Zhou M F, et al., 2012. The Early Cretaceous Yangzhaiyu lode gold deposit, North China Craton: A link between craton reactivation and gold veining[J]. Economic Geology, 107(1): 43-79.
Li Q Z, Chen Y J, Zhong Z Q, et al., 2002. Ar-Ar dating on the metallogenesis of the Dongchuang gold deposit in the Xiaoqinling area[J]. Acta Geologica Sinica, 76(4): 488-493.
Liu Y S, Hu Z C, Gao S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43.
Macpherson C G, Dreher S T, Thirlwall M F, 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 243(3): 581-593.
Maniar P D, Piccoli P M, 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643.
Mao J W, Goldfarb R J, Zhang Z W, et al., 2002. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling Mountains, central China[J]. Mineralium Deposita, 37(3-4): 306-325.
Mao J W, Xie G Q, Pirajno F, et al., 2010. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 57(1): 51-78.
Martin H, 1999. Adakitic magmas: Modern analogues of Archaean granitoids[J]. Lithos, 46(3): 411-429.
Meng Q R, Zhang G W, 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics, 323(3): 183-196.
Middlemost E A K, 1985. Magmas and Magmatic rocks[M]. London: Longman, 1-266.
Middlemost E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224.
Ou Q, Wang Q, Wyman D A, et al., 2017. Eocene adakitic porphyries in the central-northern Qiangtang Block, central Tibet: Partial melting of thickened lower crust and implications for initial surface uplifting of the plateau[J]. Journal of Geophysical Research: Solid Earth, 122(2): 1025-1053.
Pearce J A, 1996. Source and settings of granitic rocks[J]. Episodes, 19(4): 120-125.
Peccerillo A, Taylor S R, 1976. Geochemistry of Eocene calc-alkaline volcanic rocks form the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1), 63-81.
Qi N, Wang P, Yu J, et al., 2019. Geochronology and origin of the Qi189 porphyry gold deposit in Qiyugou orefield, Qinling orogen, China[J]. Ore Geology Reviews, 114: 103121.
Qin J F, Lai S C, Wang J, et al., 2007. High-Mg# adakitic tonalite from the Xichahe area, south Qinling Orogenic Belt (central China): Petrogenesis and geological implications[J]. International Geology Review, 49(12): 1145-1158.
Streck M J, Leeman W P, Chesley J, 2007. High-magnesian andesite form Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt[J]. Geology, 35(4): 351-354.
Sun S S, McDonough W E, 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313-345.
Tang K F, Li J W, Selby D, et al., 2013. Geology, mineralization, and geochronology of the Qianhe gold deposit, Xiong'ershan area, southern North China Craton[J]. Mineralium Deposita, 48(6): 729-747.
Thieblemont D, Stein G, Lescuyer J L, 1997. Epithermal and porphyry deposits: The adakite connection[J]. Earth & Planetary Sciences, 325(2): 103-109.
Tian Y F, Ye H S, Mao J W, et al., 2019. Geochronology and geochemistry of the Dianfang gold deposit, western Henan Province, central China: Implications for mineral exploration[J]. Ore Geology Reviews, 111: 102967.
Wang Q, Li Z X, Chung S L, et al., 2011. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications[J].Lithos, 126(1-2): 54-67.
Wang Q, McDermott F, Xu J F, et al., 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting[J]. Geology, 33(6): 465-468.
Wang Q, Wyman D A, Xu J F, et al., 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 272(1-2): 158-171.
Wang Q, Xu J F, Jian P, et al., 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, south China: Implications for genesis of porphyry copper mineralization[J]. Journal of Petrology, 47(1): 119-144.
Wu F Y, Lin J Q, Wilde S A, et al., 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 233(1-2): 103-119.
Xu J F, Shinjo R, Defant M J, et al., 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?[J]. Geology, 30(12): 111-1114.
Yan Z, Wang Z Q, Yan Q R, et al., 2006. Devonian sedimentary environments and provenance of the Qinling orogen: Constrains on Late Paleozoic southward accretionary tectonics of the North China Craton[J]. International Geology Review, 48(7): 585-618.
Zhang G W, Meng Q R, Lai S C, 1995. Tectonics and structure of Qinling orogenic belt[J]. Science in China (Series B), 38(11): 1379-1394.
Zhang Z Y, Wang Y H, Liu J J, et al., 2020. Geology, fluid inclusions, and H-O-S-Pb isotopes of the Chigou porphyry Cu deposit in Southern Qinling, central China: Implication for ore genesis[J]. Ore Geology Reviews, 126: 103723.
Zhang Z Y, Wang Y H, Zhang F F, et al., 2021. Origin of high Ba-Sr granitoids at Chigou in central China and implications for Cu mineralization: Insights from whole-rock geochemistry, zircon U-Pb dating, Lu-Hf isotopes and molybdenite Re-Os systematics[J]. Ore Geology Reviews, 138: 104416.
陈雷,王宗起,闫臻,等,2014.秦岭山阳-柞水矿集区150~140 Ma斑岩-矽卡岩型Cu-Mo-Fe(Au)矿床成矿作用研究[J].岩石学报,30(2):415-436. 陈衍景,2010.秦岭印支期构造背景、岩浆活动及成矿作用[J].中国地质,37(4):854-865. 陈毓川,王平安,秦克令,等,1994.秦岭地区主要金属矿床成矿系列的划分及区域成矿规律探讨[J].矿床地质,13(4):289-298. 代鸿章,王登红,刘丽君,等,2019.南秦岭镇安核桃坪钨铍矿床成矿时代及成矿模式探讨[J].地质学报,93(6):1342-1358. 代军治,高菊生,钱壮志,等,2019.小秦岭镰子沟金矿床辉钼矿Re-Os年龄和锆石U-Pb年龄及其地质意义[J].地质通报,38(8):1369-1377. 代军治,鱼康平,王瑞廷,等,2015.南秦岭宁陕地区新铺钼矿地质特征、辉钼矿Re-Os年龄及地质意义[J].岩石学报,31(1):189-199. 丁坤,2020.南秦岭柞-山矿集区典型金矿床成矿作用与成矿动力学背景[D].长安大学,博士学位论文. 葛战林,郑艳荣,郝迪,等,2020.东秦岭杨斜—丰北河成矿带杨屋场钨(金)矿床地质特征及成因探讨[J].西北地质,53(3):140-152. 弓虎军,朱赖民,孙博亚,等,2009.南秦岭沙河湾、曹坪和柞水岩体锆石U-Pb年龄、Hf同位素特征及其地质意义[J].岩石学报,25(2):248-264. 郭波,朱赖民,李犇,等,2009.华北陆块南缘华山和合峪花岗岩岩体锆石U-Pb年龄、Hf同位素组成与成岩动力学背景[J].岩石学报,25(2):265-281. 黄典豪,吴澄宇,杜安道,等,1994.东秦岭地区钼矿床的铼-锇同位素年龄及其意义[J].矿床地质,13(3):221-230. 姜子琦,王强,Wyman D A,等,2011.西藏冈底斯南缘冲木达约30 Ma埃达克质侵入岩的成因:向北俯冲的印度陆壳的熔融?[J].地球化学,40(2):126-146. 李厚民,叶会寿,毛景文,等,2007.小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义[J].矿床地质,26(4):417-424. 李诺,陈衍景,张辉,等,2007.东秦岭斑岩钼矿带的地质特征和成矿构造背景[J].地学前缘,14(5):186-198. 李双庆,杨晓勇,屈文俊,等,2010.南秦岭宁陕地区月河坪夕卡岩型钼矿Re-Os年龄和矿床学特征[J].岩石学报,26(5):1479-1486. 李永峰,毛景文,胡华斌,等,2005.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景[J].矿床地质,24(3):292-304. 刘军锋,孙勇,孙卫东,2009.秦岭拉鸡庙镁铁质岩体锆石LA-ICP-MS年代学研究[J].岩石学报,25(2):320-330. 刘凯,王瑞廷,樊忠平,等,2019.秦岭造山带柞水-山阳矿集区夏家店金矿床成矿时代及其地质意义[J].矿床地质,38(6):1278-1296. 刘云华,李真,周肃,等,2016.南秦岭东沟-金龙山金矿地质特征、成矿时代及其地质意义[J].地学前缘,23(4):81-93. 卢欣祥,李明立,王卫,等,2008.秦岭造山带的印支运动及印支期成矿作用[J].矿床地质,27(6):762-773. 马承,葛战林,郑艳荣,等,2021.陕西商洛杨斜金矿床地质特征与控矿因素探讨[J].西北地质,54(2):137-148. 毛景文,谢桂青,张作衡,等,2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,21(1):169-188. 牛宝贵,和政军,任纪舜,等,2006.秦岭地区陡岭-小茅岭隆起带西段几个岩体的Shrimp锆石U-Pb测年及其地质意义[J].地质论评,52(6):826-835. 强山峰,毕诗健,邓晓东,等,2013.豫西小秦岭地区秦南金矿床热液独居石U-Th-Pb定年及其地质意义[J].地球科学—中国地质大学学报,38(1):43-56. 陕西省地质调查院,2017.中国区域地质志·陕西志[M].北京:地质出版社. 王强,许继峰,赵振华,等,2007.中国埃达克岩或埃达克质岩及相关金属成矿作用[J].矿物岩石地球化学通报,26(4):336-349. 王晓霞,王涛,齐秋菊,等,2011.秦岭晚中生代花岗岩时空分布、成因演变及构造意义[J].岩石学报,27(6):1573-1593. 王义天,毛景文,卢欣祥,等,2002.河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar-39Ar年龄及其意义[J].科学通报,47(18):1427-1431. 王义天,叶会寿,叶安旺,等,2010.小秦岭文峪和娘娘山花岗岩体锆石SHRIMP U-Pb年龄及其意义[J].地质科学,45(1):167-180. 吴发富,王宗起,闫臻,等,2014.秦岭山阳-柞水地区燕山期中酸性侵入岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J].岩石学报,30(2):451-471. 谢桂青,任涛,李剑斌,等,2012.陕西柞水盆地池沟铜钼矿区含矿岩体的锆石U-Pb年龄和岩石成因[J].岩石学报,28(1):15-26. 徐启东,钟增球,周汉文,等,1998.豫西小秦岭金矿区的一组40Ar-39Ar定年数据[J].地质论评,44(3):323-327. 杨力,陈福坤,杨一增,等,2010.丹凤地区秦岭岩群片麻岩锆石U-Pb年龄:北秦岭地体中-新元古代岩浆作用和早古生代变质作用的记录[J].岩石学报,26(5):1589-1603. 姚书振,丁振举,周宗桂,等,2002.秦岭造山带金属成矿系统[J].地球科学―中国地质大学学报,27(5):599-604. 余晓红,2017.北秦岭杨斜金矿床成矿作用特征及矿床成因研究[D].武汉:中国地质大学(武汉),硕士学位论文. 张国伟,郭安林,董云鹏,等,2019.关于秦岭造山带[J].地质力学学报,25(5):746-768. 张国伟,张本仁,袁学诚,等,2001.秦岭造山带与大陆动力学[M].北京:科学出版社. 张旗,王焰,钱青,等,2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义[J].岩石学报,17(2):236-244. 赵东宏,杨忠堂,李宗会,等,2019.秦岭成矿带成矿地质背景及优势矿产成矿规律[M].北京:科学出版社. 朱赖民,郑俊,熊潇,等,2019.南秦岭柞水-山阳矿集区园子街岩体岩石地球化学及成矿潜力探讨[J].地学前缘,26(5):189-205.
计量
- 文章访问数: 25
- HTML全文浏览量: 1
- PDF下载量: 6