• 中文核心期刊
  • 中国科技核心期刊
  • CSCD收录期刊
  • 美国《化学文摘》收录期刊
  • Scopus数据库收录期刊
高级检索

西藏斯弄多银多金属矿床典中组板岩地球化学特征及地质意义

黄一入, 唐菊兴, 杨宗耀, 钟庆伟, 张鹏

黄一入,唐菊兴,杨宗耀,等,2024. 西藏斯弄多银多金属矿床典中组板岩地球化学特征及地质意义[J]. 沉积与特提斯地质,44(4):710−722. DOI: 10.19826/j.cnki.1009-3850.2024.06004
引用本文: 黄一入,唐菊兴,杨宗耀,等,2024. 西藏斯弄多银多金属矿床典中组板岩地球化学特征及地质意义[J]. 沉积与特提斯地质,44(4):710−722. DOI: 10.19826/j.cnki.1009-3850.2024.06004
HUANG Y R,TANG J X,YANG Z Y,et al.,2024. Geochemical characteristics and geological significance of the Dianzhong Formation slate from the Sinongduo Ag polymetallic deposit, Xizang[J]. Sedimentary Geology and Tethyan Geology,44(4):710−722. DOI: 10.19826/j.cnki.1009-3850.2024.06004
Citation: HUANG Y R,TANG J X,YANG Z Y,et al.,2024. Geochemical characteristics and geological significance of the Dianzhong Formation slate from the Sinongduo Ag polymetallic deposit, Xizang[J]. Sedimentary Geology and Tethyan Geology,44(4):710−722. DOI: 10.19826/j.cnki.1009-3850.2024.06004

西藏斯弄多银多金属矿床典中组板岩地球化学特征及地质意义

基金项目: 国家自然科学基金(42230813);四川省自然科学基金(2022NSFSC1902);四川省科技计划资助项目(2023NSFSC0753);中央高校基本科研业务费专项资金项目(24CAFUC04029)
详细信息
    作者简介:

    黄一入(1993—),女,博士,地质资源与地质工程专业。ORCID:0009-0008-8915-0713。 E-mail:huangyiru1213@126.com

    通讯作者:

    唐菊兴(1964—),男,研究员,主要从事矿床学和固体矿产勘查与评价研究。E-mail:tangjuxing@126.com

  • 中图分类号: P595;P618.51

Geochemical characteristics and geological significance of the Dianzhong Formation slate from the Sinongduo Ag polymetallic deposit, Xizang

  • 摘要:

    林子宗群是印度–亚洲大陆汇聚的重要产物,主要为一套火山岩和少量沉积岩,本次在斯弄多银多金属矿床林子宗群火山岩系的典中组中发现了大量板岩,为了研究其成因及对成矿作用的指示,对斯弄多典中组板岩开展了岩石学和全岩地球化学研究,结果显示:斯弄多典中组板岩与火山岩呈渐变接触关系,且与火山岩的大部分主量、稀土和微量元素地球化学组成相似,而不同于沉积成因的板岩。但同时,与典中组火山岩相比,典中组板岩的亚铁和As含量明显增高,虽然沉积成因的板岩As含量同样较高,但其亚铁含量却较低,亚铁和As没有明确的关系。结果表明,斯弄多典中组板岩的原岩为典中组酸性火山岩,由典中组火山岩与后期岩浆热液发生接触热变质而形成,并促进火山岩中金的富集,因此区域低温变质作用可能是典中组火山岩形成金矿的必要条件。

    Abstract:

    The Linzizong Group is an important product of the India-Asia continental convergence, primarily consisting of a suite of volcanic rocks and a small amount of sedimentary rocks. In this work, a significant amount of slate was discovered in the Dianzhong Formation of the Linzizong Group volcanic rocks from the Sinongduo Ag polymetallic deposit. In order to study the origin of the slate and its indications for mineralization, petrological and whole-rock geochemical studies were carried out on the slate. The results show that the slate exhibits a gradual contact relationship with the Dianzhong Formation volcanic rocks and has a similar geochemical composition of most of the major, rare earth, and trace elements of the volcanic rocks, which is different from that of the slate of sedimentary origin. However, the sub-iron and arsenic contents of the slate are significantly higher than those of the Dianzhong Formation volcanic rocks. Although the arsenic contents of the slate of sedimentary origin are similarly high, there is no clear relationship between the sub-iron and arsenic contents. The results suggest that the protolith of the slate from the Sinongduo Ag polymetallic deposit is the Dianzhong Formation acidic volcanic rocks, and was formed by the metamorphism of the Dianzhong Group volcanic rocks through the reheating of the later magmatic events, contributing to the enrichment of gold in the volcanic rocks. Regional low temperature metamorphism may be a necessary condition for the formation of gold ores in the Dianzhong Formation volcanic rocks.

  • 板岩由黏土质、粉砂质沉积岩或凝灰质岩石、沉凝灰岩经轻微变质作用形成,是区域低级变质作用的产物,基本没有发生重结晶作用,外表呈致密隐晶质,矿物颗粒很细,肉眼难以辨别。板岩常作为一些矿床的赋矿围岩,特别是一些造山型金矿,如内蒙古浩尧尔忽洞Au矿床(Zhang et al., 2020)、青海大场Au矿(Zhai et al., 2023)、江南造山带雁林寺Au矿(Zhang et al., 2022)和黄金洞Au矿(Zhang et al., 2020)等。板岩与成矿作用有密切的关系,常作为成矿物质的来源之一,如藏南扎西康Sb-Pb-Zn-Ag多金属矿床(Zhou et al., 2017Sun et al., 2017)、东川播卡Au矿床(刘泽奇等,2021)、西秦岭李坝Au矿床(李蓓等,2021)和湘中龙山Au-Sb矿床(蔡应雄等,2020)等。已有大部分关于板岩与成矿作用的研究都是基于板岩和矿石的S-Pb等同位素组成特征,以此探讨板岩作为赋矿围岩是否是成矿物质的重要来源,而对于板岩的全岩地球化学特征研究却极少,甚至忽略了板岩地球化学特征对成矿作用的指示意义。本次研究对西藏斯弄多银多金属矿床典中组火山岩中发现的板岩开展研究,通过野外钻孔编录、显微镜下鉴定和板岩全岩地球化学分析,查明板岩的原岩及成因,分析其对成矿作用的指示,并探讨对区域构造演化的意义。

    西藏是我国重要的有色金属开发和储备基地,其斑岩–夕卡岩–浅成低温热液型矿床的铜资源总量就占全国总量的2/3以上(唐菊兴等,2017),以冈底斯成矿带尤为著名,已发现一系列中型—大型—超大型斑岩型、夕卡岩型、浅成低温热液型、热液脉型和造山型等矿床,涵盖铜、金、银、铅、锌、钼、钨等矿种(李光明等,2021)。冈底斯成矿带分布最广的岩浆岩是林子宗群火山岩和同时期的侵入岩,其覆盖面积占冈底斯成矿带50%以上,东西延伸超过1200 km(Mo et al., 2008),具有媲美南美安第斯火山成矿带(Sillitoe et al., 2013; Holley et al., 2016)的成矿潜力,可形成浅成低温热液–隐爆角砾岩型–夕卡岩型–斑岩型矿床组合(唐菊兴等,20162017)。

    斯弄多矿床产于林子宗群典中组地层中,区域地层主要分布下二叠统昂杰组(P1a)、上二叠统下拉组(P2x)、上白垩统设兴组(K2s)、古新统典中组(E1d)、始新统年波组(E2n)和第四系(Q)(图1)。昂杰组主要由石英砂岩、粉砂质板岩与灰黑色板岩互层组成,局部夹灰岩。下拉组主要为一套厚层灰岩,局部花岗岩侵入遭受接触变质作用,变质为大理岩,其下与昂杰组整合接触,其上被林子宗群帕那组、年波组角度不整合覆盖。设兴组零星分布,主要岩性为一套产于滨浅海相潮坪环境的砂岩和粉砂岩,与下拉组断层接触,其上被林子宗群不整合覆盖。典中组地层在矿区大面积分布,主要岩性为一套中–酸性火山岩和凝灰岩。年波组主要岩性为凝灰岩,角度不整合于下拉组之上,接触带沉积了一层底砾岩,砾石成分为下拉组灰岩。岩浆活动主要有白垩世、古新世和中新世三期,表现为中–酸性→酸性→中酸性的演化特征,中新世岩浆仅在局部呈南北带状分布。区域性构造活动主要以近北西西向的中冈底斯逆冲断裂带为主,表现为古生代地层推覆于新生代地层之上。

    图  1  斯弄多矿集区区域地质简图(a)和地质图(b)(Yang et al., 2021
    Figure  1.  Regional geological sketch (a) and geological map (b) of the Sinongduo ore concentration area (Yang et al., 2021)

    斯弄多银多金属矿床赋矿围岩为林子宗群典中组火山岩,主要岩性为流纹斑岩、凝灰岩、晶屑凝灰岩和火山角砾岩,以铅锌银矿体为主,铅锌银矿体外围及窝弱地区发现有金银矿体(杨宗耀等,201920202024),窝弱地区上部金银矿体产于典中组凝灰岩中,下部铅锌银矿体产于板岩中。主要金属矿物为方铅矿、闪锌矿、黄铁矿、辉银矿、硫砷铜银矿、深红银矿、螺状硫银矿和少量黄铜矿。方铅矿多呈自形–半自形粒状与黄铁矿和闪锌矿等矿物产出,黄铜矿常以固溶体分离结构形式产于闪锌矿中,银矿物主要呈不规则粒状产于早期形成的矿物间隙,或交代早期形成的金属硫化物,也可呈矿物包裹体产于金属硫化物中。非金属脉石矿物包括石英、玉髓、伊利石、绢云母、赤铁矿、铁方解石、菱铁矿和菱锰矿等,矿石构造包括脉状、角砾状、网脉状、条带状、块状、浸染状等。

    本次研究的8件板岩样品采自斯弄多银多金属矿床,其中P09、P10、P11和P13样品采自斯弄多铅锌银矿体外围PK0101号钻孔,P03、P04、P06和P08采自窝弱地区WZK0402钻孔(图2),均为远离矿体的新鲜样品,样品呈深黑色致密块状。板岩与流纹斑岩呈突变接触关系(图3a),而与凝灰岩呈渐变过渡接触关系(图3b),在浅部呈凝灰岩夹层产出,深部则为巨厚板岩夹凝灰岩(图3c),可见板岩和凝灰岩呈薄层状相间(图3d)产出。板岩呈灰黑色,多呈致密块状,局部板片劈理发育。显微镜下大部分矿物呈极细粒状无法识别,可见含量不等的石英碎屑(图4a-c),石英碎屑边缘发生溶蚀,没有明显的重结晶现象。板岩被后期热液脉穿插,并在局部形成爆破现象,受热液脉影响的板岩中矿物具有一定的定向排列特征(图4d)。

    图  2  斯弄多银多金属矿床钻孔柱状图
    Figure  2.  Columnar illustration of drill cores of the Sinongduo Ag polymetallic deposit
    图  3  斯弄多银多金属矿床板岩特征
    Figure  3.  Characteristics of the slate from the Sinongduo Ag polymetallic deposit
    图  4  斯弄多银多金属矿床板岩显微镜下特征
    Figure  4.  Microphotographs of the slate from the Sinongduo Ag polymetallic deposit

    样品去除风化面后,用自来水清洗后分别用5% HNO3和5% HCl 在超声波清洗仪中浸泡至无气泡产生,再用纯净水把样品冲洗干净,在低于100℃环境中烘干,在确保样品不会相互污染的情况下,将样品细碎到74 µm(200目)筛孔以下以备分析测试。主量元素的分析测定采用X射线荧光光谱法(XRF),仪器为荷兰帕纳科 Axios X 荧光射线光谱仪,检测依据GB/T14506.28-2010和DZG20-02,分析误差小于5%,微量元素和稀土元素的测定采用等离子发射光谱法、质谱法和X荧光法,仪器为 iCAP6300 全谱仪、AxiosX 荧光仪和 NexIon 300x ICP-MS,检测标准为 DZG20-05和DZG20-06。首先称取40 mg研磨样品和3个国家标准( GRS1、GRS2、GRS3) 样品置于溶样弹中并用酸溶法制成溶液,然后在 ICP-MS 上进行测定。NexIon 300x ICP-MS 仪器的检测精度为:含量大于10×10-6的元素分析误差小于5% ;含量小于10×10-6的元素分析误差小于10%。本次样品的加工以及主量元素、微量元素和稀土元素测试工作均在西南冶金地质测试中心完成,工作环境温度为20℃,湿度为55%,主量、微量及稀土元素分析结果列于表1至表3。

    斯弄多银多金属矿床8件板岩样品的SiO2含量介于47.77%~84.30%,平均72.03%;Al2O3含量在7.15%~15.07%之间变化,平均10.35%;Fe2O3T含量为1.27%~3.24%,平均2.13%;MgO含量为0.23%~0.61%,平均0.41%;Na2O含量为0.04%~0.07%;平均0.05%;K2O含量为1.99%~4.48%,平均3.00%;CaO含量为0.10%~20.34%,平均4.06%;TiO2含量为0.07%~0.30%,平均0.17%;MnO含量为0.02%~0.29%,平均0.12%;P2O5含量为0.04%~0.08%,平均0.05%。可以看出PK0101和WZK0402钻孔中的板岩主量元素含量存在一定的差异,远离矿体的PK0101钻孔中P09、P10、P11和P13样品各主量元素含量稳定,而窝弱金矿体WZK0402钻孔底部采集的P03、P04、P06和P08的SiO2和CaO含量变化较大,且CaO含量高则全岩烧失量较高,表明存在较多的含钙碳酸盐矿物,样品中可能存在方解石脉体。P03、P04、P06和P08的Al2O3和K2O含量整体低于P09、P10、P11和P13样品。在主量元素Harker图解中(图5),斯弄多板岩的Al2O3和SiO2呈负相关,而与K2O、TiO2和MgO呈弱正相关。

    斯弄多板岩稀土总量(ΣREE)介于92.53×10-6~205.75×10-6,平均154.15×10−6。在稀土元素球粒陨石标准化图中(图6,斯弄多凝灰岩、扎西康日当组板岩和温江寺金矿板岩数据分别引自丁帅等,2017李关清等,2014代军治等,2011),斯弄多板岩明显富集轻稀土元素,轻稀土含量(ΣLREE)为79.32×10-6~182.97×10-6,平均值为135.77×10-6;重稀土含量(ΣHREE)为13.22×10-6~22.78×10-6,平均值为18.39×10-6;轻稀土元素和重稀土元素比值(LREE/HREE)为6.00~8.47,平均为7.34;球粒陨石标准化的丰度比值(La/Yb)N介于5.57~10.21,平均值为7.78;上地壳标准化的丰度比值(La/Yb)N介于0.57~1.04,平均值为0.80。微量元素原始地幔标准化蛛网图中(图7),斯弄多板岩富集大离子亲石元素Rb、K和高场强元素Th、U、Pb和Nd等,亏损大离子亲石元素Ba、Sr和一些高场强元素(HFSE)如La、Ce、Nb、Ta、Ti、P。

    图  6  斯弄多银多金属矿床板岩稀土元素球粒陨石标准化配分图(a)(Sun and McDonough, 1989)和上地壳标准化(Taylor and McLennan, 1995)配分图(b)(斯弄多凝灰岩、扎西康日当组板岩和温江寺金矿板岩数据分别引自丁帅等,2017李关清等,2014代军治等,2011,下同)
    Figure  6.  Chondrite-normalized (a) (Sun and McDonough, 1989) and UCC-normalized (Taylor and McLennan, 1995) REE (b) patterns for the slate from the Sinongduo Ag polymetallic deposit (the data of Sinongduo tuff, slate from Zhaxikang Ridang Formation, and slate from Wenjiangsi Au deposite are after Ding et al., 2017, Guan et al., 2014, and Dai et al., 2011, respectively; the same below)
    图  7  斯弄多银多金属矿床板岩微量元素原始地幔标准化(Sun and McDonough, 1989)蛛网图(斯弄多凝灰岩数据引自丁帅等,2017
    Figure  7.  Primitive mantle-normalized (Sun and McDonough, 1989) trace element diagram for the slate from the Sinongduo Ag polymetallic deposit (the data of the Sinongduo tuff are after Ding et al., 2017)

    变质岩原岩恢复是变质岩研究不可或缺的内容,一些变质岩仍保留了原岩的结构和矿物残余,或与之存在明显的过渡接触关系,因此可以通过这些特征进行原岩恢复。当变质岩原岩结构和残余成分较少或没有原岩相关特征时,其能够反映原始岩石成因特点的信息趋于模糊甚至消失,此时可借助岩石化学方法进行变质岩原岩恢复,除伴有强烈交代作用的变质岩如各种交代蚀变岩和混合岩等外,所有变质岩都是特定原岩在相对封闭条件下经变质作用的产物,其成分基本上是等化学变化,因而岩石化学和地球化学特征基本反映原岩的特征,并主要受原岩形成作用和成岩构造环境所制约(柴广路和李双应,2016)。

    通过钻孔岩心特征(图2图3)可知,板岩在浅部呈火山岩夹层产出,在深部则为板岩夹火山岩,且火山岩和板岩呈渐变过渡关系,可以初步判断斯弄多板岩的原岩为典中组火山岩或火山沉积岩。然而,斯弄多板岩薄片显微镜下鉴定显示,其基本缺乏原岩的结构和矿物组成特征,且区域内存在昂杰组板岩,是纳如松多主要赋矿层位之一,因此本研究借助地球化学手段进行原岩恢复。

    在变质岩主量元素原岩恢复图解中(图8a),除P6和P8明显受碳酸盐脉影响外,斯弄多板岩样品基本位于火成岩和沉积岩分界线附近,因此不能准确判别斯弄多板岩的原岩是沉积岩还是火成岩,变质作用过程中伴随硅的富集可能导致对原岩的判别偏向沉积岩(Winchester et al., 1980),斯弄多板岩SiO2含量变化较大(图5),可能存在变质作用使SiO2含量升高的问题。为了解决因变质作用导致的SiO2含量变化对变质岩原岩恢复所造成的影响,Ti、Zr和Ni等在变质作用过程中相对稳定的元素(Cann, 1970; Winchester and Floyd, 1976)被用作变质岩原岩恢复。在Zr/TiO2–Ni图解中(图8b,扎西康日当组板岩数据引自李关清等,2014),斯弄多板岩样品全部落在火成岩区,且样品不分散,元素Ti、Zr和Ni含量稳定,与成分相对单一的火山岩特征相符;扎西康日当组板岩样品则大部分位于沉积岩区,且样品分散,表明成分相对复杂的原岩特征,符合多物源沉积岩的地球化学特征(李关清等,2014),由日当组粉砂岩和页岩经区域变质作用形成(喻晓等,2023)。

    图  8  斯弄多银多金属矿床板岩原岩恢复图解(Winchester and Max, 1982
    Figure  8.  Protolith reconstruction diagrams for the slate from the Sinongduo Ag polymetallic deposit (Winchester and Max, 1982)
    图  5  斯弄多银多金属矿床板岩主量元素 Harker 图解(斯弄多凝灰岩数据引自丁帅等,2017,下同)
    Figure  5.  Harker diagrams of major elements for the slate from the Sinongduo Ag polymetallic deposit(the data of Sinongduo tuff are after Ding et al., 2017, the same below)

    由于板岩的原岩可能为以凝灰岩为代表的火山岩或沉积岩两种,如果原岩为凝灰岩,则稀土元素和微量元素特征以球粒陨石和原始地幔标准化进行研究;如果其原岩为沉积岩,则稀土元素和微量元素特征以上地壳或北美页岩标准化进行研究。在不确定斯弄多板岩原岩的情况下,本文采用球粒陨石标准化和上地壳标准化两种方式,分别绘制了稀土元素的配分模式图。研究表明,如果原岩为中酸性的长英质岩石(如花岗岩、流纹岩),其REE含量就会相对较高,LREE/HREE比值也高,LREE相对富集,且具有明显的Eu负异常;如果原岩为基性玄武质岩石,其REE含量就会较低,LREE/HREE比值也较低,HREE含量较高,无Eu异常(Crichton and Condie, 1993; Cullers, 1994)。在稀土元素球粒陨石标准化配分图中(图6a),斯弄多板岩轻稀土元素和重稀土元素标准化比值(La/Yb)c1介于5.57~10.21,平均值为7.78,斯弄多板岩和凝灰岩、扎西康日当组板岩和温江寺金矿板岩均为轻稀土富集和重稀土平坦的右倾配分模式,且均为Eu负异常,但斯弄多板岩和凝灰岩重稀土元素总量高于扎西康日当组板岩和温江寺金矿板岩,证明斯弄多板岩的成因不同于其他两个矿区的板岩,且可能与斯弄多凝灰岩相关;在稀土元素上地壳标准化配分图中(图6b),扎西康日当组板岩和温江寺金矿板岩各稀土元素含量均与上地壳基本一致,且表现为弱Eu正异常,而斯弄多板岩和凝灰岩则为轻稀土元素相对富集,斯弄多板岩轻稀土元素和重稀土元素标准化比值(La/Yb)UCC介于0.57~1.04,平均值为0.80,表现为弱的左倾配分模式,且存在明显的Eu负异常。斯弄多板岩稀土元素经标准化后与凝灰岩具有基本一致的配分模式,配分曲线近于平行,表明斯弄多板岩和凝灰岩具有相似的地球化学组成,且受风化和蚀变等后期影响较小,而扎西康日当组板岩和温江寺金矿板岩的稀土元素配分曲线则变化较大,可能受到风化和蚀变作用的影响。在微量元素原始地幔标准化蜘蛛图中,斯弄多板岩同样与斯弄多凝灰岩具有基本一致的微量元素组成,其分布曲线基本重合,且能保持平行或近于平行状态,证明变质作用对斯弄多板岩微量元素含量影响较小。

    图  9  斯弄多银多金属矿床板岩原岩Zr/TiO2–Nb/Y分类图解(Winchester and Floyd,1977
    Figure  9.  Zr/TiO2–Nb/Y diagram of the slate from the Sinongduo Ag polymetallic deposit (Winchester and Floyd, 1977)

    在火山岩Zr/TiO2–Nb/Y分类图解中,斯弄多板岩和凝灰岩样品位于流纹岩和英安岩区域,进一步证明了斯弄多板岩可能是由典中组凝灰岩经轻微区域变质作用而形成。在钻孔柱状图(图2)和板岩岩心照片(图3)中,板岩与凝灰岩呈明显的渐变接触关系,而与流纹斑岩呈突变接触关系,且在板岩镜下照片(图4)中可见大量石英晶屑。因此,斯弄多银多金属矿床发现的板岩的原岩应为典中组凝灰岩等火山沉积岩。该套火山岩和火山沉积岩年龄为65~61 Ma(丁帅等,2017Yang et al., 2020),与斯弄多银多金属矿床矿石S-Pb同位素一致,具有上地壳同位素组成特征(Li et al., 2019Yang et al., 2021)。

    目前关于林子宗群的研究都是针对火山岩、侵入岩(Mo et al., 2008Yan et al., 2019Yang et al., 2021)和少量沉积岩(莫宣学等,2003Huang et al., 2013),斯弄多地区典中组中板岩的发现表明典中组经历了低温区域变质作用。最新地质年代和热年代学研究认为冈底斯地区约52 Ma上涌的大量岩浆及其演化产物会造成早期形成的典中组和年波组在54~50 Ma时期经历近300℃的加热过程(Huang et al., 2022),但被质疑没有发现相应的区域变质作用(Zhao et al., 2023),斯弄多板岩的发现证明了典中组确实经历了低温区域变质作用。斯弄多板岩主要产于典中组火山岩底部,而顶部典中组火山岩并没有发生变质作用,其发生变质作用的时间应略晚于其形成时间,与顶部火山岩成岩时间相近,因此本文认为斯弄多地区晚期约61 Ma的岩浆作用形成的岩浆热液使早期火山岩发生低温区域变质作用,最终形成了斯弄多典中组板岩。

    林子宗群火山岩及侵入岩占冈底斯成矿带面积的一半以上,其不仅作为印度–亚洲大陆汇聚的重要研究对象(Mo et al., 2008; Yan et al., 2019; Yang et al., 2021),还孕育了一系列重要矿床如斯弄多银多金属矿床、纳如松多铅锌矿床、亚贵拉铅锌矿床和查个勒铅锌矿床等,林子宗群火山岩分布区被认为是西藏斑岩–夕卡岩–浅成低温热液型矿床的重要找矿区域(唐菊兴等,20162017)。林子宗群火山岩是否能形成一定规模的浅成低温热液型金矿床有待证实,冈底斯西段罗布真金银多金属矿床产于林子宗群帕那组中,但其含金石英的Rb-Sr等时线年龄为(21.1±1.8) Ma(Huang et al., 2019),并不是与林子宗群火山岩成岩同时期成矿。

    斯弄多地区典中组火山岩具有强烈的金银矿化现象,并在钻孔和地表发现有多条金银矿脉(郎兴海等,2017杨宗耀等,201920202024),赋矿围岩为典中组流纹斑岩、凝灰岩和晶屑凝灰岩,金银矿化主要产于条带状、皮壳状、角砾状和晶洞状石英脉中,具有典型的低温成矿作用特征。主要载金矿物为黄铁矿和白铁矿,具有明显的核–边结构(杨宗耀,2021),矿石特征与日本Akeshi 和Kasuga 浅成低温热液型 Au 矿床(Ishida et al., 2022)极为相似,表现为烟灰色至黑色,且有残余石英。载金黄铁矿LA-ICP-MS原位研究显示,金主要以晶格金形式存在,其次为微纳米粒子和金银矿物包裹体,银赋存状态以离子置换为主,也可以银单矿物和流体包裹体存在(杨宗耀,2021)。虽然本文研究的板岩产于凝灰岩等赋矿围岩的底部,但板岩是由凝灰岩等火山沉积岩经变质作用而形成,且板岩中可见铅锌矿脉(图10a),方铅矿也可呈隐爆角砾岩胶结物产出(图10b),可见多期次的浸染状黄铁矿和石英黄铁矿脉(图10c-d),发育明显的绿泥石、方解石和菱锰矿等碳酸盐矿物(图10e-f),均为中低温热液蚀变的产物,因此板岩与金银铅锌成矿作用具有一定关系。由于板岩常作为金矿的赋矿围岩,与金成矿作用有密切关系,且斯弄多的板岩和金矿化相比于林子宗群火山岩中其他矿床而特别,因此本文从板岩地球化学角度研究其对成矿作用的指示。

    图  10  斯弄多银多金属矿床板岩中矿化现象
    Py—黄铁矿;Gn—方铅矿;Qz—石英;Cal—方解石;Chl—绿泥石
    Figure  10.  Mineralization in the slate from the Sinongduo Ag polymetallic deposit

    大量矿床的S-Pb同位素研究表明板岩作为赋矿围岩提供了成矿物质(Zhou et al., 2017Sun et al., 2017蔡应雄等,2020刘泽奇等,2021李蓓等,2021),但相关研究并未针对板岩详细开展,甚至忽略了板岩地球化学特征对成矿作用的指示。马东升等(2002)通过地层微量元素特征研究湘中盆地中–低温锑(金)矿床的成矿物质来源,研究表明,湘中盆地边缘基底板岩为该地区锑(金)矿床提供了成矿物质,且Au和Sb元素具有较高的淋出率。李关清等(2014)对藏南扎西康Sb-Pb-Zn-Ag多金属矿集区下侏罗统日当组板岩开展全岩地球化学研究,通过对日当组赋矿板岩的地球化学特征分析,认为扎西康Sb-Pb-Zn-Ag成矿元素的富集与海底热液活动相关。

    黄铁矿和毒砂是金的重要载体,两者均具有较高的As含量,且毒砂中的铁为亚铁,当黄铁矿和毒砂作为载金矿物时,赋矿围岩的As和亚铁应明显升高。相比于斯弄多未发生金银矿化的岩浆岩,斯弄多板岩的FeO和As含量明显升高,呈正相关(图11),且矿化的火山岩也具有极高的Au、Ag、Mo、As和Sb异常(杨宗耀等,2024)。而与金银成矿作用无关的板岩,如扎西康日当组具有沉积成因的板岩,其As含量随亚铁含量升高而降低,具有明显的负相关关系(图11)。因此我们认为斯弄多板岩可能与金银成矿作用相关,该成矿作用导致围岩中As和亚铁的富集。

    图  11  斯弄多银多金属矿床板岩As–FeO图解(斯弄多岩浆岩数据引自Yang et al., 2021
    Figure  11.  As–FeO diagram for the slate from the Sinongduo Ag polymetallic deposit (the data of Sinongduo magmatic rocks are after Yang et al., 2021)

    典中组分布十分广泛,其中却未发现具有一定规模的金银成矿作用,而斯弄多地区金银矿化十分强烈,已发现多条金银矿脉,且空间上与板岩关系密切。因此,金银成矿作用可能与板岩的形成密切相关,后期岩浆作用及其形成的岩浆热液等产物使早期火山岩沉积岩发生低温区域变质作用,在岩浆热液和变质热液共同作用下促成金的富集。

    本文通过对斯弄多银多金属矿床发现的板岩开展研究,查明了板岩的原岩,探讨了板岩的形成过程和地质意义以及板岩对林子宗群中金成矿作用的指示意义。主要结论如下:

    (1)斯弄多板岩与该地区火山岩呈渐变接触关系,局部呈互层状产出,具有相似的地球化学组成,受后期风化和蚀变等后期影响较小,且板岩中可见明显的颗粒结构,表明斯弄多板岩的原岩为典中组火山沉积岩。

    (2)斯弄多板岩是低温变质作用的产物,其发生变质作用的时间应略晚于其形成时间,与顶部火山岩成岩时间相近,由后期岩浆作用及其形成的岩浆热液等产物加热早期典中组火山沉积岩形成。

    (3)斯弄多金银成矿作用和板岩在空间上和成因上密切相关,是后期岩浆热液和变质热液共同作用的结果,斯弄多板岩相比于其原岩火山岩明显富集亚铁和As元素,为金的沉淀提供了化学条件。

  • 图  1   斯弄多矿集区区域地质简图(a)和地质图(b)(Yang et al., 2021

    Figure  1.   Regional geological sketch (a) and geological map (b) of the Sinongduo ore concentration area (Yang et al., 2021)

    图  2   斯弄多银多金属矿床钻孔柱状图

    Figure  2.   Columnar illustration of drill cores of the Sinongduo Ag polymetallic deposit

    图  3   斯弄多银多金属矿床板岩特征

    Figure  3.   Characteristics of the slate from the Sinongduo Ag polymetallic deposit

    图  4   斯弄多银多金属矿床板岩显微镜下特征

    Figure  4.   Microphotographs of the slate from the Sinongduo Ag polymetallic deposit

    图  6   斯弄多银多金属矿床板岩稀土元素球粒陨石标准化配分图(a)(Sun and McDonough, 1989)和上地壳标准化(Taylor and McLennan, 1995)配分图(b)(斯弄多凝灰岩、扎西康日当组板岩和温江寺金矿板岩数据分别引自丁帅等,2017李关清等,2014代军治等,2011,下同)

    Figure  6.   Chondrite-normalized (a) (Sun and McDonough, 1989) and UCC-normalized (Taylor and McLennan, 1995) REE (b) patterns for the slate from the Sinongduo Ag polymetallic deposit (the data of Sinongduo tuff, slate from Zhaxikang Ridang Formation, and slate from Wenjiangsi Au deposite are after Ding et al., 2017, Guan et al., 2014, and Dai et al., 2011, respectively; the same below)

    图  7   斯弄多银多金属矿床板岩微量元素原始地幔标准化(Sun and McDonough, 1989)蛛网图(斯弄多凝灰岩数据引自丁帅等,2017

    Figure  7.   Primitive mantle-normalized (Sun and McDonough, 1989) trace element diagram for the slate from the Sinongduo Ag polymetallic deposit (the data of the Sinongduo tuff are after Ding et al., 2017)

    图  8   斯弄多银多金属矿床板岩原岩恢复图解(Winchester and Max, 1982

    Figure  8.   Protolith reconstruction diagrams for the slate from the Sinongduo Ag polymetallic deposit (Winchester and Max, 1982)

    图  5   斯弄多银多金属矿床板岩主量元素 Harker 图解(斯弄多凝灰岩数据引自丁帅等,2017,下同)

    Figure  5.   Harker diagrams of major elements for the slate from the Sinongduo Ag polymetallic deposit(the data of Sinongduo tuff are after Ding et al., 2017, the same below)

    图  9   斯弄多银多金属矿床板岩原岩Zr/TiO2–Nb/Y分类图解(Winchester and Floyd,1977

    Figure  9.   Zr/TiO2–Nb/Y diagram of the slate from the Sinongduo Ag polymetallic deposit (Winchester and Floyd, 1977)

    图  10   斯弄多银多金属矿床板岩中矿化现象

    Py—黄铁矿;Gn—方铅矿;Qz—石英;Cal—方解石;Chl—绿泥石

    Figure  10.   Mineralization in the slate from the Sinongduo Ag polymetallic deposit

    图  11   斯弄多银多金属矿床板岩As–FeO图解(斯弄多岩浆岩数据引自Yang et al., 2021

    Figure  11.   As–FeO diagram for the slate from the Sinongduo Ag polymetallic deposit (the data of Sinongduo magmatic rocks are after Yang et al., 2021)

  • [1] 蔡应雄,杨红梅,邱啸飞,等,2020. 湘中龙山Au-Sb矿床成矿物质来源——来自S、Pb和Sr同位素证据[J]. 地质学报,94(8):2311 − 2324. DOI: 10.3969/j.issn.0001-5717.2020.08.010

    Cai Y X,Yang H M,Qiu X F,et al.,2020. Constraints on the ore forming source material of the Longshan Au-Sb deposit in central Hunan:Evidence from S,Pb and Sr isotopes[J]. Acta Geologica Sinica,94(8):2311 − 2324 (in Chinese with English abstract). DOI: 10.3969/j.issn.0001-5717.2020.08.010

    [2]

    Cann J R,1970. Rb,Sr,Y,Zr and Nb in some ocean floor basaltic rocks[J]. Earth and Planetary Science Letters,10(1):7 − 11. DOI: 10.1016/0012-821X(70)90058-0

    [3] 柴广路,李双应,2016. 北淮阳东段佛子岭群变质岩地球化学特征及其地质意义[J]. 地学前缘,23(4):29 − 45.

    Chai G L,Li S Y,2016. Geochemical characteristics and geological implications for the metamorphic rocks of Foziling Group in eastern of North Huaiyang Tectonic Belt[J]. Earth Science Frontiers,2016,23(4):29 − 45 (in Chinese with English abstract).

    [4]

    Crichton J G,Condie K C,1993. Trace elements as source indicators in cratonic sediments:A case study from the early Proterozoic Libby Creek Group,Southeastern Wyoming[J]. The Journal of Geology,101(3):319 − 332. DOI: 10.1086/648226

    [5]

    Cullers R L,1994. The controls on the major and trace element variation of shales,siltstones,and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas,USA[J]. Geochimica et Cosmochimica Acta,58(22):4955 − 4972. DOI: 10.1016/0016-7037(94)90224-0

    [6] 代军治,袁旭东,陈少迅,等,2011. 陕西省凤县温江寺金矿地质地球化学特征及找矿[J]. 中国地质,38(3):692 − 700. DOI: 10.3969/j.issn.1000-3657.2011.03.017

    Dai J Z,Yuan X D,Chen S X,et al.,2011. Geological and geochemical characteristics and prospecting work of the Wenjiangsi gold deposit,Fengxian County,Shaanxi Province[J]. Geology in China,38(3):692 − 700 (in Chinese with English abstract). DOI: 10.3969/j.issn.1000-3657.2011.03.017

    [7] 丁帅,陈毓川,唐菊兴,等,2017. 林子宗群火山岩与成矿关系:以斯弄多浅成低温热液型矿床为例[J]. 矿床地质,36(5):1074 − 1092.

    Ding S,Chen Y C,Tang J X,et al.,2017. Relationship between Linzizong volcanic rocks and mineralization:A case study of Sinongduo epithermal Ag-Pb-Zn deposit[J]. Mineral Deposits,36(5):1074 − 1092 (in Chinese with English abstract).

    [8]

    Holley E A,Bissig T,Monecke T,2016. The Veladero high-sulfidation epithermal gold deposit,El Indio-Pascua Belt,Argentina:Geochronology of alunite and jarosite[J]. Economic Geology,111(2):311 − 330. DOI: 10.2113/econgeo.111.2.311

    [9]

    Huang H,Liu H,Li G,et al.,2019. Zircon U-Pb,molybdenite Re-Os and quartz vein Rb-Sr geochronology of the Luobuzhen Au-Ag and Hongshan Cu deposits,Tibet,China:Implications for the Oligocene-Miocene porphyry-epithermal metallogenic system[J]. Minerals,9(8):476. DOI: 10.3390/min9080476

    [10]

    Huang W,Dupont-Nivet G,Lippert P C,et al.,2013. Inclination shallowing in Eocene Linzizong sedimentary rocks from Southern Tibet:Correction,possible causes and implications for reconstructing the India-Asia collision[J]. Geophysical Journal International,194(3):1390 − 1411. DOI: 10.1093/gji/ggt188

    [11]

    Huang W,Lippert P C,Reiners P W,et al.,2022. Hydrothermal events in the Linzizong Group:implications for Paleogene exhumation and paleoaltimetry of the Southern Tibetan Plateau[J]. Earth and Planetary Science Letters,583:117390. DOI: 10.1016/j.jpgl.2022.117390

    [12]

    Ishida M,Romero R,Leisen M,et al.,2022. Auriferous pyrite formed by episodic fluid inputs in the Akeshi and Kasuga high-sulfidation deposits,Southern Kyushu,Japan[J]. Mineralium Deposita, 57:129 − 145.

    [13] 郎兴海,唐菊兴,杨宗耀,等,2017. 西藏自治区谢通门县斯弄多铅锌矿区地球物理特征及找矿方向[J]. 地质与勘探,53(3):508 − 518. DOI: 10.12134/j.dzykt.2017.03.010

    Lang X H,Tang J X,Yang Z Y,et al.,2017. Geophysical characteristics and prospecting direction of the Sinongduo Pb-Zn deposit in Xietongmen County,Tibet[J]. Geology and Exploration,53(3):508 − 518 (in Chinese with English abstract). DOI: 10.12134/j.dzykt.2017.03.010

    [14] 李蓓,朱赖民,丁乐乐,等,2021. 西秦岭李坝金矿床地质、同位素地球化学及其成因探讨[J]. 地质学报,95(2):427 − 448.

    Li B,Zhu L M,Ding L L,et al.,2021. Geology,isotope geochemistry,and ore genesis of the Liba gold deposit in the western Qinling orogen,China[J]. Acta Geologica Sinica,95(2):427 − 448 (in Chinese with English abstract).

    [15] 李光明,张林奎,张志,等,2021. 青藏高原南部的主要战略性矿产:勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 41(2):351 − 360.

    Li G M,Zhang L K,Zhang Z,et al.,2021. New exploration progresses,resource potentials and prospecting targets of strategic minerals in the southern Qinghai-Tibet Plateau[J]. Sedimentary Geology and Tethyan Geology, 41(2):351 − 360 (in Chinese with English abstract).

    [16] 李关清,程文斌,章永梅,等,2014. 藏南扎西康Sb-Pb-Zn-Ag多金属矿集区下侏罗统日当组赋矿地层元素地球化学特征及地质意义[J]. 矿物岩石地球化学通报,33(5):598 − 608. DOI: 10.3969/j.issn.1007-2802.2014.05.005

    Li G Q,Cheng W B,Zhang Y M,et al.,2014. Geochemical characteristics and their geologic significance of the lower Jurassic Ridang Formation host strata from the Zhaxikang Sb-Pb-Zn-Ag polymetallic ore-concentrated district,south Tibet[J]. Bulletin of Mineralogy,Petrology and Geochemistry,33(5):598 − 608 (in Chinese with English abstract). DOI: 10.3969/j.issn.1007-2802.2014.05.005

    [17]

    Li H F,Tang J X,Hu G Y,et al.,2019. Fluid inclusions,isotopic characteristics and geochronology of the Sinongduo epithermal Ag-Pb-Zn deposit,Tibet,China[J]. Ore Geology Reviews,107:692 − 706. DOI: 10.1016/j.oregeorev.2019.02.033

    [18] 刘泽奇,江小均,李超,等,2021. 东川播卡Au矿的成矿时代及成矿背景:来自硫化物Re-Os同位素和炭质板岩微量元素证据[J]. 地球科学,46(12):4260 − 4273. DOI: 10.3321/j.issn.1000-2383.2021.12.dqkx202112004

    Liu Z Q,Jiang X J,Li C,et al.,2021. Metallogenic age and setting of Boka gold deposit Dongchuan:evidence from Re-Os isotope of sulfide and trace element of carbonaceous slate[J]. Earth Science,46(12):4260 − 4273 (in Chinese with English abstract). DOI: 10.3321/j.issn.1000-2383.2021.12.dqkx202112004

    [19]

    Mo X X,Niu Y L,Dong G C,et al.,2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology,250(1-4):49 − 67. DOI: 10.1016/j.chemgeo.2008.02.003

    [20] 莫宣学,赵志丹,邓晋福,等,2003. 印度—亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘,10(3):135 − 148. DOI: 10.3321/j.issn:1005-2321.2003.03.013

    Mo X X,Zhao Z D,Deng J F,et al.,2003. Response of volcanism to the India-Asia collision[J]. Earth Science Frontiers,10(3):135 − 148 (in Chinese with English abstract). DOI: 10.3321/j.issn:1005-2321.2003.03.013

    [21]

    Sillitoe R H,Tolman J,Van Kerkvoort G,2013. Geology of the Caspiche porphyry gold-copper deposit,Maricunga Belt,Northern Chile[J]. Economic Geology,108(4):585 − 604. DOI: 10.2113/econgeo.108.4.585

    [22]

    Sun S S,McDonough W F,1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society,London,Special Publications,42:313 − 345. DOI: 10.1144/GSL.SP.1989.042.01.19

    [23]

    Sun X,Zheng Y Y,Pirajno F,et al.,2017. Geology,S-Pb isotopes,and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet:Implications for multiple mineralization events at Zhaxikang[J]. Mineralium Deposita,53(3):435 − 458.

    [24] 唐菊兴,丁帅,孟展,等,2016. 西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床——以斯弄多银多金属矿为例[J]. 地球学报,37(4):461 − 470. DOI: 10.3975/cagsb.2016.04.08

    Tang J X,Ding S,Meng Z,et al.,2016. The first discovery of the low sulfidation epithermal deposit in Linzizong volcanics,Tibet:A case study of the Sinongduo Ag polymetallic deposit[J]. Acta Geoscientia Sinica,37(4):461 − 470 (in Chinese with English abstract). DOI: 10.3975/cagsb.2016.04.08

    [25] 唐菊兴,王勤,杨欢欢,等,2017. 西藏斑岩−矽卡岩−浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J]. 地球学报,38(5):571 − 613. DOI: 10.3975/cagsb.2017.05.02

    Tang J X,Wang Q,Yang H H,et al.,2017. Mineralization,exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet[J]. Acta Geoscientia Sinica,38(5):571 − 613 (in Chinese with English abstract). DOI: 10.3975/cagsb.2017.05.02

    [26]

    Taylor S R,McLennan S M,1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics,33(2):241 − 265. DOI: 10.1029/95RG00262

    [27]

    Winchester J A,Floyd P A,1976. Geochemical magma type discrimination:Application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters,28(3):459 − 469. DOI: 10.1016/0012-821X(76)90207-7

    [28]

    Winchester J A,Floyd P A,1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology,20:325 − 343. DOI: 10.1016/0009-2541(77)90057-2

    [29]

    Winchester J A,Park R G,Holland J G,1980. The geochemistry of Lewisian semipelitic schists from the Gairloch district,Wester Ross[J]. Scottish Journal of Geology,16(2-3):165 − 179. DOI: 10.1144/sjg16020165

    [30]

    Winchester J A, Max M D,1982. The geochemistry and origins of the Precambrian rocks of the Rosslare Complex, SE Ireland[J]. Journal of the Geological Society, 139(3):309 − 319.

    [31]

    Yan H Y,Long X P,Li J,et al.,2019. Arc andesitic rocks derived from partial melts of mélange diapir in subduction zones:evidence from whole-rock geochemistry and Sr-Nd-Mo isotopes of the Paleogene Linzizong volcanic succession in Southern Tibet[J]. Journal of Geophysical Research:Solid Earth,124(1):456 − 475. DOI: 10.1029/2018JB016545

    [32] 杨宗耀,唐菊兴,任东兴,等,2024. 西藏斯弄多银多金属矿床地球物理和地球化学勘查进展[J]. 地球科学, 49(3):1 − 23.

    Yang Z Y,Tang J X,Ren D X,et al.,2024. Geochemical and geophysical exploration in Sinongduo Ag polymetallic deposit,Tibet[J]. Earth Science, 49(3):1 − 23 (in Chinese with English abstract).

    [33] 杨宗耀,2021. 西藏斯弄多矿集区浅成低温热液型铅锌银多金属矿床勘查模型与找矿方向[D].成都: 西南交通大学.

    Yang Z Y,2021. Exploration model and prospecting direction of the Sinongduo epithermal Pb-Zn-Ag polymetallic deposit,Tibet[D]. Chengdu: Southwest Jiaotong University (in Chinese with English abstract).

    [34]

    Yang Z Y,Tang J X,Santosh M,et al.,2021. Microcontinent subduction and S-type volcanism prior to India–Asia collision[J]. Scientific Reports,11(1):14882. DOI: 10.1038/s41598-021-94492-y

    [35] 杨宗耀,唐菊兴,张乐骏,等,2020. 西藏斯弄多地区岩帽地质地球化学特征: 林子宗群火山岩中成矿的指示[J]. 地球科学, 45(3):789 − 803.

    Yang Z Y,Tang J X,Zhang L J,et al.,2020. Geological and geochemical characteristies of lithocaps in Sinongduo area,Tibet: Implications for the mineralization in Linzizong Group volcanic rocks[J]. Earth Science, 45(3):789 − 803 (in Chinese with English abstract).

    [36] 杨宗耀,张崇海,赵晓彦,等,2019. 西藏斯弄多银多金属矿床岩石地球化学特征及找矿前景[J]. 物探与化探,43(4):702 − 708.

    Yang Z Y,Zhang C H,Zhao X Y,et al.,2019. Characteristics of rock geochemical anomalies and prospecting potential of the Sinongduo silver polymetallic deposit,Tibet[J]. Geophysical and Geochemical Exploration,43(4):702 − 708 (in Chinese with English abstract).

    [37]

    Yang Z Y,Zhao X Y,Hu G Y,et al.,2020. Geology,geochronology,and geochemistry of the Sinongduo Ag-Pb-Zn deposit in the Gangdese metallogenic belt:Implications of intermediate sulfidation mineralization in the Linzizong volcanic succession[J]. Ore Geology Reviews,127:103796. DOI: 10.1016/j.oregeorev.2020.103796

    [38] 喻晓,吕新彪,曹华文,2023. 藏南下侏罗统日当组地球化学和碎屑锆石 U-Pb 年代学特征及构造意义[J]. 沉积与特提斯地质,43(4):759 − 769.

    Yu X,Lü X B,Cao H W,2023. Geochemistry and detrital zircon U-Pb geochronology of the Jurassic Ridang Formation in the southern Tibet and its tectonic implications[J]. Sedimentary Geology and Tethyan Geology,43(4):759 − 769 (in Chinese with English abstract).

    [39]

    Zhai W,Zheng S Q,Zhang L Y,et al.,2023. Genesis of the world-class Dachang gold deposit,northern Qinghai-Tibet Plateau:A multiproxy approach[J]. Ore Geology Reviews,157:105410. DOI: 10.1016/j.oregeorev.2023.105410

    [40]

    Zhang L,Groves D I,Yang L Q,et al.,2020. Utilization of pre-existing competent and barren quartz veins as hosts to later orogenic gold ores at Huangjindong gold deposit, Jiangnan Orogen, southern China[J]. Mineralium Deposita,55(2):363 − 380. DOI: 10.1007/s00126-019-00904-5

    [41]

    Zhang Y C,Shao Y J,Liu Q Q,et al.,2022. Pyrite textures, trace element and sulfur isotopes of Yanlinsi slate-hosted deposit in the Jiangnan Orogen, South China: Implications for gold mineralization processes[J]. Ore Geology Reviews,148:105029. DOI: 10.1016/j.oregeorev.2022.105029

    [42]

    Zhao Q,Yi Z Y,Huang B C,2023. Comment on: "Hydrothermal events in the Linzizong Group: Implications for Paleogene exhumation and paleoaltimetry of the southern Tibetan Plateau" by Huang et al. (2022)[J]. Earth and Planetary Science Letters,603:117972. DOI: 10.1016/j.jpgl.2022.117972

    [43]

    Zhou Q,Li W,Qing C,et al.,2017. Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya:Evidence from structures,Re-Os-Pb-S isotopes,and fluid inclusions[J]. Mineralium Deposita,53(4):585 − 600.

图(11)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  6
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2024-03-27
  • 录用日期:  2024-04-04
  • 刊出日期:  2024-12-30

目录

/

返回文章
返回