The breakup geodynamic process and effects of the Paleo-Mesoproterozoic Columbia supercontinent
-
摘要:
超大陆的聚合与裂解是板块构造运动的自我表达形式,其聚合过程伴随有全球性俯冲、碰撞造山活动,而裂解过程则发育大规模基性岩浆事件。哥伦比亚超大陆是地球地质历史时期第一个真正意义上的全球性超大陆,其主体于2.1~1.8 Ga完成聚合,并于1.3 Ga最终裂解。相较于其他年轻的超大陆,哥伦比亚超大陆的古地理重建模型还存在较大的不确定性,这限制了对其裂解动力学过程及效应的认识。本文以全球古—中元古代基性岩浆事件对比为主线,综合已有研究成果及全球岩浆岩地球化学数据,提出古—中元古代多期地幔柱活动主导了哥伦比亚超大陆的不彻底裂解,影响了当时大陆地壳的化学成分和地形高度。高度分异的大陆地壳与低地形导致由陆壳物质风化剥蚀进入海洋的营养物质的通量大大降低,进而限制了海洋生物的初级生产力,最终阻碍了哥伦比亚超大陆至罗迪尼亚超大陆过渡时期的生命演化进程。
Abstract:The assembly and breakup of supercontinents is the self-expression of plate tectonics. The assembly stage is accompanied by global-scale subduction and collisional orogeny, while the fragmentation stage produces large-scale mafic magmatic events. The Columbia supercontinent was the first true supercontinent in Earth's history, and its main body coalesced between 2.1~1.8 Ga and finally broke apart at 1.3 Ga. Compared with the other younger supercontinents, the paleogeographic reconstruction model of the Columbia supercontinent still remains quite uncertain, which profoundly influences our understanding of the geodynamic processes and effects of its breakup. In this study, based on the correlation of global Paleo-Mesoproterozoic mafic magmatism events, integrated with the published work and analysis of global igneous rock geochemical data, we proposed that multiple Paleo-Mesoproterozoic mantle plume events resulted in the incomplete breakup of the Columbia supercontinent, which significantly affected the geochemical compositions and topographic height of the continental crust at that time. Highly differentiated continental crust and low topographic height together greatly reduced the flux of nutrients into the ocean by weathering and denudation of continental crust materials, thus limiting the primary productivity of marine organisms, and ultimately stalling the evolution of life during the transition period from the Colombian supercontinent to the Rodinia supercontinent.
-
Keywords:
- Columbia supercontinent /
- Incomplete breakup /
- Mantle plumes /
- Paleo-Mesoproterozoic
-
0. 引言
超大陆是指地球上多数陆块(数量≥75%)通过碰撞拼贴形成的一个统一的超级大陆(Meert, 2012)。目前,地质学界广泛认可的超大陆包括古—中元古代哥伦比亚(Columbia)超大陆(Zhao et al., 2002),新元古代罗迪尼亚(Rodinia)超大陆(Li et al., 2008),和古生代—中生代盘古大陆(Pangaea)(Domeier et al., 2012)。在地质历史时期超大陆的形成与演化呈现出周期性,周期约为700~800 Ma(Nance et al., 2014)。超大陆的聚合过程伴随着全球性俯冲、碰撞造山活动,因此可以将大量的表壳物质带入地幔深部。截然不同的是,超大陆在裂解过程中往往会有大规模基性岩浆岩产出(主要以基性大火成岩省的形式),可以将地幔深部的超基性/基性岩浆带到地壳浅部并且伴随大量火山气体(如CO2、CO、SO2等)喷发(Nance et al., 2014)。因此,揭示超大陆的裂解动力学过程及效应对深入了解岩石圈与大气圈、生物圈等表生圈层之间的相互作用具有重要意义。
通常而言,诱发超大陆裂解的动力学机制主要有两种,包括自下而上(Bottom-up)的地幔柱模式和自上而下(Top-down)的深俯冲模式(李献华, 2021)。例如,Storey(1995)通过对冈瓦纳古大陆的裂解过程进行分析,发现其在180 Ma, 130 Ma和100 Ma这三个阶段的裂解过程在时空上均与地幔柱活动高度耦合,进而提出,冈瓦纳大陆的裂解主要由这三期地幔柱作用主导。此外,有部分学者通过对全球各克拉通出露的新元古代基性岩墙群进行研究,提出以华南板块为中心的约825~725 Ma超级地幔柱活动主导了罗迪尼亚超大陆的最终裂解(李献华, 2021)。除了地幔柱诱发超大陆发生裂解的观点之外,也有学者认为超大陆外围环型深俯冲产生的板片拖拽力也可导致超大陆裂解(Cawood et al., 2016)。例如,Keppie(2015)通过对中生代全球各个板块漂移的数据资料进行综合研究,提出特提斯洋俯冲时板片产生的拖拽力诱导了盘古大陆的早期裂解和大西洋的扩张;Cawood et al.(2016)通过对罗迪尼亚超大陆裂解时期环绕在其外围与俯冲作用相关的增生造山带记录进行了系统的研究,发现这些增生造山作用与罗迪尼亚超大陆内部岩石圈伸展—裂解在时间上具有一致性,从而提出,罗迪尼亚超大陆的裂解主要与环超大陆俯冲有关。
尽管有部分学者尝试利用数值模拟方法,对诱发超大陆裂解的动力学机制进行定量约束,但数值模拟过程中不同参数的选择以及模型本身存在的不确定性,导致对诱导超大陆发生裂解的动力学机制的认识还存在较大的分歧(李献华, 2021)。近些年,随着对超大陆裂解动力学过程研究的深入,越来越多的研究认为,超大陆的裂解过程可能并非像之前人们所认识的是由地幔柱或者环超大陆深俯冲单方面主导,而很可能是二者协同作用的结果(Niu et al., 2020;Zheng et al., 2022)。相较于年轻的超大陆,人们对更古老的哥伦比亚超大陆的裂解动力学过程及效应的研究相对薄弱。本文通过对古—中元古代时期的地质资料(包括基性岩浆事件,变质作用,酸性岩浆作用,风化强度等)进行总结分析,初步探讨导致哥伦比亚超大陆裂解的动力学过程以及所产生的效应,以期为后续的相关研究起到抛砖引玉的作用。
1. 哥伦比亚超大陆概述
1.1 哥伦比亚超大陆古地理重建
Rogers & Santosh(2002)通过对全球古—中元古代造山运动和裂谷事件的对比研究,提出了哥伦比亚超大陆的概念并粗略地给出了相关的古地理重建模式图(图1a)。与此同时,基于对全球2.1~1.8 Ga碰撞造山带岩石地层学、构造热事件、地质年代学和古地磁数据的综合研究,Zhao et al.(2002)给出了更为详细的哥伦比亚超大陆重建模式图(图1b),并认为南美–西非、西澳–南非、劳伦–波罗的、西伯利亚–劳伦、劳伦–澳洲中部、东南极–劳伦以及华北–印度这些陆块之间存在着古地理位置上的亲缘性。近二十年来,大量的古地磁研究定量地限定了哥伦比亚超大陆的核心部分至少包括劳伦、西伯利亚和波罗的这三个陆块(Wingate et al., 2009; Evans and Mitchell, 2011)。此外,基于其他地质证据,有学者认为哥伦比亚超大陆的核心还可能包括澳洲(Kirscher et al., 2020; Payne et al., 2009)、亚马逊(Johansson, 2009; Reis et al., 2013)、刚果–圣弗朗西斯科(Salminen et al., 2016)和华北等陆块(Kusky et al., 2007; Zhang et al., 2012)。
图 1 哥伦比亚超大陆重建模式图(a,据Rogers and Santosh, 2009修改;b,据Zhao et al., 2002修改)Figure 1. The reconstruction models for the Columbia supercontinent (a, modified after Rogers and Santosh, 2009; b, modified after Zhao et al., 2002)然而,由于缺乏高精度的古—中元古代时期古地磁数据,一些前寒武纪地块在哥伦比亚超大陆中的古地理位置还存在着较大的争议。例如,扬子板块在哥伦比亚超大陆中的古地理位置存在三种模式:(1)扬子–澳洲–华北相连接(Wang et al., 2012);(2)扬子–澳洲东北部–印度西北部相连接(Zhou et al., 2014);(3)扬子–澳洲东北部–劳伦西北部相连接(Wang et al., 2014; Furlanetto et al., 2016; 王伟等,2019)。近些年来,随着扬子西南缘前寒武纪地质研究的深入,相继发现并报道了与劳伦陆块同期的约2.35 Ga的S型花岗岩以及2.0 Ga变质作用,指示扬子与劳伦陆块具有古地理位置上的亲缘性(Cui et al., 2019; Wang et al., 2016; 崔晓庄等, 2020)。此外,扬子西南缘广泛出露有1.75 Ga, 1.70 Ga, 1.65 Ga和1.50 Ga基性岩浆岩(王生伟等,2016),可以与劳伦以及西伯利亚陆块同期的基性岩浆事件在时间和化学成分上匹配,被认为是扬子与劳伦及西伯利亚陆块相连的关键证据(Fan et al., 2020; Lu et al., 2020)。
1.2 哥伦比亚超大陆演化时限
虽然目前地质学界对于哥伦比亚超大陆的古地理重建模型还存在一定的争议,但其聚合与裂解的时限已经得到了较为精确的约束。Zhao et al.(2002)认为哥伦比亚超大陆主体最后的聚合时间为2.1~1.8 Ga,以北美、西伯利亚、波罗的、华北、印度、南非等陆块上出露的贯穿整个陆块的2.1~1.8 Ga的碰撞造山带为标志。这一时期,各陆块广泛发育碰撞造山活动相关的S型花岗岩,通常具有较高的锆石δ18O值(>7.0‰)和较低的锆石εHf(t)值(<0), 指示该碰撞造山阶段有大量经历了地表低温热液蚀变的古老地壳物质再循环(Dan et al., 2014)。之后在部分陆块的大陆边缘经历了长达500 Ma的俯冲增生,形成了一个沿着现今北美、格林兰和波罗的等陆块南缘分布的巨型岩浆增生带(图1b), 以产出大量A型花岗岩为标志(Condie et al., 2023)。这一阶段的A型花岗岩通常具有较高的锆石εHf(t)值(>0),指示在俯冲增生阶段有大量新生地壳物质的参与(Ye et al., 2016)。近年来,通过对澳洲东北部Georgetown Inlier地区古—中元古代时期的沉积、岩浆、变质变形等地质记录开展研究,有学者提出,哥伦比亚超大陆聚合的最晚时限为约1.6 Ga,以澳洲与劳伦陆块在约1.6 Ga完成碰撞拼贴,以及澳洲南部和北美陆块在1.61~1.59 Ga期间的造山运动为标志(Gibson et al., 2020; Kirscher et al., 2020; Nordsvan et al., 2018; Pourteau et al., 2018; Volante et al., 2019)。
总体而言,哥伦比亚超大陆的主体部分于大约1.8 Ga完成碰撞拼贴后,其经历了1.79~1.5 Ga 阶段的初始裂解以及1.3~1.2 Ga 阶段的最终裂解(Ernst et al., 2016; Gladkochub et al., 2022; de Oliveira & Rocha de Rezende, 2019; Zhang et al., 2017),该时期以大量产出陆内裂谷盆地(例如劳伦Thelon盆地,澳洲Leichhardt盆地,西伯利亚Aldan陆块Uyan群,印度的Aravalli超群,扬子西南缘昆阳陆内裂谷以及华北白云鄂博-渣尔泰和燕山-辽西裂谷带等)和基性岩墙(群)为特征(Ernst et al., 2013; Furlanetto et al., 2016; Lu et al., 2020;耿元生等,2019)。
2. 哥伦比亚超大陆裂解动力学过程
2.1 哥伦比亚超大陆的不彻底裂解
前人研究认为,超大陆主要以三种方式进行更替:Extroversion模式(由先前超大陆的外大洋闭合形成下一个新的超大陆)、Introversion模式(由先前超大陆裂解的内洋闭合形成下一个新的超大陆)(Murphy & Nance, 2003),以及Orthoversion模式(新超大陆的形成垂直于原超大陆中心的环形俯冲带上)(Mitchell et al., 2012)。其中,冈瓦纳古大陆被认为是由莫桑比克洋(罗迪尼亚超大陆外大洋)沿着东非造山带闭合从而导致东西冈瓦纳陆块聚合而成(Murphy & Nance, 2003),而盘古大陆则被认为是由冈瓦纳古大陆裂解后沿着Iapetus和Rheic洋(内部洋)闭合形成(Murphy & Nance, 2005)。此外,罗迪尼亚超大陆也被认为是由哥伦比亚超大陆裂解后以内部洋闭合(Introversion)的方式发展演化而来(Li et al., 2019)。
基于现有古地磁数据重建的古—中元古代哥伦比亚超大陆与新元古代罗迪尼亚超大陆在古地理模型上呈现出高度的相似性(图2)(Li et al., 2008; Zhao et al., 2002),特别是劳伦–西伯利亚–波罗的和澳洲–东南极–劳伦连接模式自哥伦比亚超大陆一直延续至罗迪尼亚超大陆(图2)(Li et al., 2019),指示哥伦比亚超大陆可能经历了不彻底的裂解(Roberts, 2013)。哥伦比亚超大陆至罗迪尼亚超大陆过渡时期,全球被动大陆边缘发育程度低,指示当时板块之间的相互运动较弱(Bradley, 2008),这一地质证据也支持哥伦比亚超大陆裂解不彻底的推论。值得注意的是,有学者甚至将哥伦比亚超大陆与罗迪尼亚超大陆合并为一个单一的超大陆——Nudinia超大陆,认为该超大陆从
2100 Ma开始形成,一直到700 Ma才完成裂解(Cawood, 2020)。虽然该提议在国际地质学界并未受到多数人的认可,但暗示哥伦比亚超大陆与罗迪尼亚超大陆之间存在千丝万缕的内在联系。图 2 哥伦比亚超大陆和罗迪尼亚超大陆古地理重建模式对比图(修改自Wang et al., 2021)Figure 2. The comparisons for the reconstruction models of the Columbia and Rodinia supercontinents (modified after Wang et al., 2021)2.2 哥伦比亚超大陆裂解动力学
哥伦比亚超大陆中的多数陆块在
2100 ~1800 Ma完成聚合,随后便转入初始裂解阶段,以全球多数克拉通(包括扬子、西非、刚果–圣弗朗西斯科、华北、西伯利亚、澳洲、波罗的、劳伦、亚马逊和印度)中发育的晚古元古代—早中元古代时期的基性岩浆事件为标志(Ernst et al., 2013a; Wang et al., 2021)(图3)。这些基性岩浆岩多表现出E-MORB到OIB的地球化学特征,其中少数基性岩也呈现出与岛弧岩浆岩类似的地球化学特征(如亏损Nb,Ta,Ti等高场强元素),被认为是基性岩浆在就位过程中遭受了少量地壳物质或岩石圈地幔混染的结果(Lu et al., 2020; Gladkochub et al., 2022)。有学者提出全球范围内广泛发育的晚古元古代—早中元古代基性岩浆事件代表了三期地幔柱活动:年龄从老至新依次包括1790 Ma的Avanavero–熊耳地幔柱,1750 Ma的Timpton地幔柱和1500 Ma的Kuonamka地幔柱(图3)(Silveira et al., 2013; Ernst et al., 2013b, 2016)。此外,在哥伦比亚超大陆中的劳伦、波罗的、西伯利亚、西非、刚果和华北等陆块中均报道有大量约
1380 ~1300 Ma时期的基性岩浆事件,也被认为是地幔柱活动的产物(Ernst et al., 2013a; Zhang et al., 2017; Peng, 2015),但上述地幔柱活动并未导致哥伦比亚超大陆的主体发生完全解体(Li et al., 2019)。值得注意的是,有学者研究认为地幔柱活动可以促使超大陆发生早期裂解,但不能导致超大陆完全解体,实际导致超大陆彻底解体的机制为板块构造(Niu, 2020)。罗迪尼亚超大陆裂解之后形成了冈瓦纳古大陆,指示其未发生彻底裂解,这一地质事实似乎与超级地幔柱主导罗迪尼亚超大陆裂解的观点更为贴近(江新胜等,2020)。哥伦比亚超大陆裂解期间,各个陆块广泛发育基性岩浆事件,相反缺乏俯冲活动相关的岩浆作用(Ernst et al., 2013a; Zhang et al., 2017; Peng, 2015)。此外,哥伦比亚超大陆具有与罗迪尼亚超大陆高度相似的古地理重建模型。因此,本文认为哥伦比亚超大陆的不彻底裂解过程主要受多期地幔柱活动主导,以
1790 Ma、1750 Ma、1500 Ma 和1300 Ma这四期全球性基性岩浆事件为标志。3. 哥伦比亚超大陆裂解效应
3.1 哥伦比亚超大陆盖层效应
通过对全球中酸性岩浆岩(包括火山岩和侵入岩)的地球化学数据进行收集、统计分析,发现哥伦比亚超大陆至罗迪尼亚超大陆过渡时期的火山岩与侵入岩皆呈现出高SiO2含量, 高Rb/Sr比值以及低Al2O3、P2O5含量的特征(图4)(Lu et al., 2023)。将收集的数据集按年龄进行分组后以SiO2为横坐标,其他元素为纵坐标,做哈克图解,显示在基性–酸性岩浆演化过程中当熔体的SiO2含量超过63%以后,岩浆的Al2O3和P2O5含量急剧降低,而Rb/Sr比值则急剧升高。同时,利用AlphaMELTS软件在压力设定为0.1 GPa和0.3 GPa的条件下进行分离结晶模拟,显示基性岩浆在达到磷灰石饱和点之后,由于磷灰石的分离结晶,会导致岩浆向贫P2O5的趋势演化(图5)。上述结果表明,哥伦比亚超大陆至罗迪尼亚超大陆过渡时期的火山岩与侵入岩所表现出的高硅低磷特征,指示当时的大陆地壳经历了高度的化学成分分异。
图 4 全球中酸性岩浆岩成分从2.5 Ga到0.5 Ga的变化图(修改自Lu et al., 2023)Figure 4. The variation diagram for the geochemical compositions of the global 2.5-0.5 Ga intermediate to felsic magmatic rocks (modified after Lu et al., 2023)图 5 分离结晶作用评估图(修改自Lu et al., 2023)Figure 5. The diagrams for deconvolving the effect of fractional crystallization (modified after Lu et al., 2023)Keller & Schoene (2018)通过对全球基性岩地球化学数据进行统计分析,发现中元古代时期基性岩的MgO含量比中元古代前后的基性岩都高,暗示当时的地幔温度比较高。同时在全球范围内报道有大量中元古代时期的高温A型花岗岩、斜长岩以及广泛发育高T/P的变质作用(Zou et al., 2023),表明中元古代的壳–幔都具有较高的热流值。前人通过数值模拟研究证实,当地壳热流值较高时,将不利于板块之间碰撞造山形成高耸的山脉(Sizova et al., 2010)。有趣的是,Tang et al. (2021)通过对全球碎屑锆石微量元素进行研究,利用锆石Eu异常的指标限定中元古代的地壳是自太古宙之后在地质历史中处于最薄的状态。此外,数值模拟研究表明,超大陆的聚合会起到盖层的作用,对岩石圈深部地幔的演化产生重要影响(Brandl et al., 2013; Lenardic et al., 2011)。
综合上述地质与地球化学证据,认为哥伦比亚超大陆由于在聚合之后经历了不彻底的裂解,使其整体发挥盖层作用,阻碍了地幔深部热量的散失,导致当时的地幔与地壳均具有较高的热流值。高热流值不仅促进了当时大陆地壳的高度分异,形成了高硅低磷的长英质岩石,而且导致当时造山作用形成的山脉普遍具有偏低的地形高度。
3.2 低风化作用强度制约生命演化
哥伦比亚超大陆至罗迪尼亚超大陆过渡时期地壳的高度分异以及低地形特征势必会对当时的大陆风化作用产生重要影响(Bataille et al., 2017; Tang et al., 2021)。研究表明,长英质岩石的抗风化能力强于玄武质岩石(Hartmann et al., 2014)。中元古代时期大陆地壳的高度分异必然会导致大量的长英质岩石出露于地表,同时考虑到当时的大陆地壳的地形海拔较低(Tang et al., 2021),可以推断中元古代时期的风化强度可能不会太高。基于全球细粒沉积岩主量元素数据的收集整理,Lu et al. (2023)计算了中元古代时期的大陆风化强度,结果显示,哥伦比亚超大陆至罗迪尼亚超大陆过渡时期的风化强度最低(图6),进一步验证了上述推论。海洋中生命所必需的营养物质(例如磷)主要来源于大陆地壳物质的风化剥蚀(Hao et al., 2020)。通常而言,玄武质岩石比长英质岩石更为富集磷(Horton, 2015),且在哥伦比亚超大陆裂解期间产出了多期地幔柱活动相关的基性大火成岩省(Ernst et al., 2013a),但是中元古代时期较低的风化强度指示当时大陆岩石的风化作用较弱,限制了大量的大陆物质风化剥蚀输入海洋。
图 6 大陆风化强度图(修改自Lu et al., 2023)Figure 6. The diagram for the calculated continental weathering intensity (modified after Lu et al., 2023)海洋中生命必需营养元素的丰度控制了生物的初级生产力,Crockford et al. (2018)通过对加拿大Sibley盆地中元古代的石膏开展了三氧同位素研究,表明中元古代生物的初级生产力较低,进一步验证了本文对中元古代有限的大陆物质风化剥蚀输入进海洋这一认识。综上所述,地幔柱主导哥伦比亚超大陆的不彻底裂解产生了一系列的连锁效应,可能最终影响了整个中元古代地球的生命演化进程。
4. 结论
结合前人对全球岩浆岩地球化学数据的统计分析,通过对哥伦比亚超大陆裂解时期全球基性岩浆事件进行分析总结,得出以下结论。
(1)多期地幔柱活动主导了哥伦比亚超大陆的不彻底裂解,使哥伦比亚超大陆整体起到盖层的作用,阻碍了地幔深部热量的散失,导致当时的地幔及地壳均具有较高的热流值。
(2)壳幔的高热状态不仅促使当时大陆地壳的成分发生了高度分异,产出大量高硅低磷的岩浆岩,而且导致当时造山作用形成的山脉呈现出较低的地形高度。
(3)大陆地壳成分和地形高度共同影响了当时大陆的风化作用强度,限制了大陆物质风化剥蚀输入海洋的通量,进一步降低了海洋生物的初级生产力,最终影响了哥伦比亚超大陆至罗迪尼亚超大陆过渡时期的生命演化进程。
致谢:费光春副教授和薛尔堃博士对论文初稿提出了宝贵的意见,两位审稿专家及编辑部提出了许多建设性意见和建议,在此一并表示衷心的感谢。
-
图 1 哥伦比亚超大陆重建模式图(a,据Rogers and Santosh, 2009修改;b,据Zhao et al., 2002修改)
Figure 1. The reconstruction models for the Columbia supercontinent (a, modified after Rogers and Santosh, 2009; b, modified after Zhao et al., 2002)
图 2 哥伦比亚超大陆和罗迪尼亚超大陆古地理重建模式对比图(修改自Wang et al., 2021)
Figure 2. The comparisons for the reconstruction models of the Columbia and Rodinia supercontinents (modified after Wang et al., 2021)
图 4 全球中酸性岩浆岩成分从2.5 Ga到0.5 Ga的变化图(修改自Lu et al., 2023)
Figure 4. The variation diagram for the geochemical compositions of the global 2.5-0.5 Ga intermediate to felsic magmatic rocks (modified after Lu et al., 2023)
图 5 分离结晶作用评估图(修改自Lu et al., 2023)
Figure 5. The diagrams for deconvolving the effect of fractional crystallization (modified after Lu et al., 2023)
图 6 大陆风化强度图(修改自Lu et al., 2023)
Figure 6. The diagram for the calculated continental weathering intensity (modified after Lu et al., 2023)
-
[1] Bradley D C, 2008. Passive margins through earth history[J]. Earth-Science Reviews, 91: 1-26. DOI: 10.1016/j.earscirev.2008.08.001
[2] Bataille C P, Willis A, Yang X, Liu X M, 2017. Continental igneous rock composition: A major control of past global chemical weathering[J]. Science Advances, 3: e1602183. DOI: 10.1126/sciadv.1602183
[3] Brandl P A, Regelous M, Beier C, et al. , 2013. High mantle temperatures following rifting caused by continental insulation[J]. Nature Geoscience, 6: 391-394. DOI: 10.1038/ngeo1758
[4] Cawood P A, Strachan R A, Pisarevsky S A, et al. , 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles[J]. Earth and Planetary Science Letters, 449: 118-126. DOI: 10.1016/j.jpgl.2016.05.049
[5] Cawood P A, 2020. Earth Matters: A tempo to our planet’s evolution[J]. Geology, 48: 525-526.
[6] Crockford P W, Hayles J A, Bao H, et al. , 2018. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity[J]. Nature, 559: 613-616. DOI: 10.1038/s41586-018-0349-y
[7] 崔晓庄, 任光明, 孙志明, 等, 2020. 扬子陆块西南缘早前寒武纪撮科杂岩记录的多期岩浆-变质事件[J]. 地球科学, 45(8): 1-16 Cui X Z, Ren G M, Sun Z M, et al. , 2020. Multiple Tectonothermal Events Recorded in the Early Precambrian Cuoke Complex in the Southwestern Yangtze Block, South China[J]. Earth Science, 45(8): 1-16.
[8] Cui X Z, Wang J, Sun Z, et al. , 2019. Early Paleoproterozoic (ca. 2.36 Ga) post-collisional granitoids in Yunnan, SW China: Implications for linkage between Yangtze and Laurentia in the Columbia supercontinent[J]. Journal of Asian Earth Sciences, 169: 308-322. DOI: 10.1016/j.jseaes.2018.10.026
[9] Condie K C, Pisarevsky S A, Puetz S J, et al. , 2023. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events[J]. Earth and Planetary Science Letters, 610: 118125. DOI: 10.1016/j.jpgl.2023.118125
[10] de Oliveira A, Rocha de Rezende C, 2019. Fragments of 1.79-1.75 Ga Large Igneous Provinces in reconstructing Columbia (Nuna): A Statherian supercontinent-superplume coupling? [J] Episodes, 42: 55 − 67.
[11] Dan W, Li X H, Wang Q, et al. , 2014. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off [J]. Precambrian Research, 254: 59-72. DOI: 10.1016/j.precamres.2014.07.024
[12] Domeier M, Van der Voo R, Torsvik T H, 2012. Paleomagnetism and Pangea: the road to reconciliation[J]. Tectonophysics, 514: 14-43.
[13] Evans D A D, Mitchell R N, 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna[J]. Geology, 39: 443-446.
[14] Ernst R E, Bleeker W, Söderlund U, et al. , 2013a. Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution[J]. Lithos, 174: 1-14. DOI: 10.1016/j.lithos.2013.02.017
[15] Ernst R E, Pereira E, Hamilton M A, et al. , 2013b. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions[J]. Precambrian Research, 230: 103-118. DOI: 10.1016/j.precamres.2013.01.010
[16] Ernst R E, Hamilton M A, Söderlund U, et al. , 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic[J]. Nature Geoscience, 9: 464-469. DOI: 10.1038/ngeo2700
[17] Fan H P, Zhu W G, Li Z X, 2020. Paleo- to Mesoproterozoic magmatic and tectonic evolution of the southwestern Yangtze Block, south China: New constraints from ca. 1.7–1.5 Ga mafic rocks in the Huili-Dongchuan area[J]. Gondwana Research, 87: 248-262. DOI: 10.1016/j.gr.2020.06.019
[18] Furlanetto F, Thorkelson D J, Rainbird R H, et al. , 2016. The Paleoproterozoic Wernecke Supergroup of Yukon, Canada: Relationships to orogeny in northwestern Laurentia and basins in North America, East Australia, and China[J]. Gondwana Research, 39: 14-40. DOI: 10.1016/j.gr.2016.06.007
[19] 耿元生, 旷红伟, 杜利林, 等, 2019. 从哥伦比亚超大陆裂解事件论古/中元古代的界限[J]. 岩石学报, 35(8): 2299-2324 DOI: 10.18654/1000-0569/2019.08.02 Geng Y S, Kuang H W, Du L L, et al. , 2019. On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent[J]. . Acta Petrologica Sinica, 35(8): 2299-2324. DOI: 10.18654/1000-0569/2019.08.02
[20] Gladkochub D P, Donskaya T V, Pisarevsky S A, et al. , 2022. 1.79-1.75 Ga mafic magmatism of the Siberian craton and late Paleoproterozoic paleogeography[J]. Precambrian Research, 370: 106557. DOI: 10.1016/j.precamres.2022.106557
[21] Gibson G M, Champion D C, Huston D L, et al. , 2020. Orogenesis in Paleo-Mesoproterozoic Eastern Australia: A response to Arc-Continent and Continent-Continent Collision During Assembly of the Nuna Supercontinent[J]. Tectonics, 39: e2019TC005717. DOI: 10.1029/2019TC005717
[22] Johansson Å, 2009. Baltica, Amazonia and the SAMBA connection–1000 million years of neighbourhood during the Proterozoic? [J]. Precambrian Research, 175: 221-234. DOI: 10.1016/j.precamres.2009.09.011
[23] Hao J H, Knoll A H, Huang F, et al. , 2020. Cycling phosphorus on the Archean Earth: Part I. Continental weathering and riverine transport of phosphorus[J]. Geochimica et Cosmochimica Acta, 273: 70-84. DOI: 10.1016/j.gca.2020.01.027
[24] Hartmann J, Moosdorf N, Lauerwald R, et al. , 2014. Global chemical weathering and associated P-release — The role of lithology, temperature and soil properties[J]. Chemical Geology, 363: 145-163. DOI: 10.1016/j.chemgeo.2013.10.025
[25] Horton F, 2015. Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? [J]. Geochemistry, Geophysics, Geosystems, 16: 1723-1738.
[26] 江新胜, 崔晓庄, 卓皆文, 等, 2020. 华南扬子陆块西缘新元古代康滇裂谷盆地开启时间新证据[J]. 沉积与特提斯地质, 40(3): 31-37 Jiang X S, Cui X Z, Zhuo J W, et al. , 2020. New evidence for the opening time of the Neoproterozoic Kangdian rift basin, western Yangtze Block, South China[J]. Sedimentary Geology and Tethyan Geology, 40(3): 31-37
[27] Keller B, Schoene B, 2018. Plate tectonics and continental basaltic geochemistry throughout Earth history[J]. Earth and Planetary Science Letters, 481: 290-304. DOI: 10.1016/j.jpgl.2017.10.031
[28] Keppie D F, 2015. How the closure of paleo-Tethys and Tethys oceans controlled the early breakup of Pangaea[J]. Geology, 43: 335-338.
[29] Kirscher U, Mitchell R N, Liu Y B, et al. 2020. Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent[J]. Geology, 49(2): 174 − 179.
[30] Kusky T, Li J, Santosh M, 2007. The Paleoproterozoic North Hebei orogen: North China craton's collisional suture with the Columbia supercontinent[J]. Gondwana Research, 12: 4-28. DOI: 10.1016/j.gr.2006.11.012
[31] Lenardic A, Moresi L, Jellinek A, et al. , 2011. Continents, supercontinents, mantle thermal mixing, and mantle thermal isolation: Theory, numerical simulations, and laboratory experiments[J]. Geochemistry, Geophysics, Geosystems, 12: Q10016.
[32] 李献华, 2021. 超大陆裂解的主要驱动力—地幔柱或深俯冲? [J]. 地质学报 95(1), 20 − 31. Li X H, 2021. The major driving force triggering breakup of supercontinent: mantle plumes or deep subduction? [J]. Acta Geologica Sinica, 95(1): 20 − 31(in Chinese with English abstract).
[33] Li Z X, Bogdanova S V, Collins A S, et al. , 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 160: 179-210. DOI: 10.1016/j.precamres.2007.04.021
[34] Li Z X, Mitchell R N, Spencer C J, et al. 2019. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes[J]. Precambrian Research, 323: 1 − 5.
[35] Lu G M, Wang W, Cawood P A, et al. , 2020. Late Paleo- to early Mesoproterozoic mafic magmatism in the SW Yangtze Block: Mantle plumes associated with Nuna breakup? [J]. Journal of Geophysical Research: Solid Earth, 125: e2019JB019260. DOI: 10.1029/2019JB019260
[36] Lu G M, Wang W, Ernst R E, et al. , 2023. Evolutionary stasis during the Mesoproterozoic Columbia-Rodinia supercontinent transition[J]. Precambrian Research, 391: 107057. DOI: 10.1016/j.precamres.2023.107057
[37] Meert J G, 2012. What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent[J]. Gondwana Research, 21: 987-993. DOI: 10.1016/j.gr.2011.12.002
[38] Murphy J B, Nance R D, 2003. Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence[J]. Geology, 31: 873-876.
[39] Murphy J B, Nance R D, 2005. Do supercontinents turn inside-in or inside-out? [J]. International Geology Review, 47: 591-619. DOI: 10.2747/0020-6814.47.6.591
[40] Mitchell R N, Kilian T M, Evans D A D, 2012. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time[J]. Nature, 482: 208-211. DOI: 10.1038/nature10800
[41] Nance R D, Murphy J B, Santosh M, 2014. The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 25: 4-29. DOI: 10.1016/j.gr.2012.12.026
[42] Niu Y L, 2020. On the cause of continental breakup: A simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes[J]. Journal of Asian Earth Sciences, 194: 104367. DOI: 10.1016/j.jseaes.2020.104367
[43] Nordsvan A R, Collins W J, Li Z X, et al. 2018. Laurentian crust in northeast Australia: Implications for the assembly of the supercontinent Nuna[J]. Geology, 46(3): 251 − 254.
[44] Payne J L, Hand M, Barovich K M, et al. , 2009. Correlations and reconstruction models for the 2500-1500 Ma evolution of the Mawson Continent[J]. Geological Society of London Special Publications, 323: 319-355. DOI: 10.1144/SP323.16
[45] Peng P, 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications[J]. Science China Earth Sciences, 58: 649-675. DOI: 10.1007/s11430-014-5026-x
[46] Pourteau A, Smit M A, Li Z X, et al. 2018. 1.6 Ga crustal thickening along the final Nuna suture[J]. Geology, 46: 959 − 962.
[47] Reis N J, Teixeira W, Hamilton M A, et al. 2013. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U-Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence[J]. Lithos, 174: 175 − 195.
[48] Roberts N M W, 2013. The boring billion? – Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent[J]. Geoscience Frontiers, 4: 681-691. DOI: 10.1016/j.gsf.2013.05.004
[49] Rogers J J W, Santosh M, 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent[J]. Gondwana Research, 5: 5-22. DOI: 10.1016/S1342-937X(05)70883-2
[50] Salminen J M, Evans D A D, Trindade R I F, et al. , 2016. Paleogeography of the Congo/Sao Francisco craton at 1.5 Ga: Expanding the core of Nuna supercontinent[J]. Precambrian Research, 286: 195-212. DOI: 10.1016/j.precamres.2016.09.011
[51] Silveira E M, Söderlund U, Oliveira E P, et al. , 2013. First precise U-Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications[J]. Lithos, 174: 144-156. DOI: 10.1016/j.lithos.2012.06.004
[52] Sizova E, Gerya T, Brown M, et al. , 2010. Lithos subduction styles in the Precambrian : Insight from numerical experiments[J]. Lithos, 116(3-4): 209-229. DOI: 10.1016/j.lithos.2009.05.028
[53] Stacey J S, Kramers J D, 1975. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 26: 207-221. DOI: 10.1016/0012-821X(75)90088-6
[54] Tang M, Chu X, Hao J, et al. , 2021. Orogenic quiescence in Earth’s middle age[J]. Science, 371: 728-731. DOI: 10.1126/science.abf1876
[55] Volante S, Pourteau A, Collins W J, et al. , 2019. Multiple P-T-d-t paths reveal the evolution of the final Nuna assembly in northeast Australia[J]. Journal of Metamorphic Geology, 38(6): 593-627.
[56] Wang L J, Yu J H, Griffin W L, et al. , 2012. Early crustal evolution in the western Yangtze Block: Evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks[J]. Precambrian Research, 222-223: 368-385. DOI: 10.1016/j.precamres.2011.08.001
[57] 王生伟, 蒋小芳, 杨波, 等, 2016. 康滇地区元古宙构造运动Ⅰ: 昆阳陆内裂谷、地幔柱及其成矿作用[J]. 地质论评, 62( 6): 1353-1377 Wang S W, Jiang X F, Yang B, et al. , 2016. The Proterozoic tectonic movement in Kangdian area I: Kunyang intracontinental rift, mantle plume and its metallogenesis [J]. Geological Review, 62: 1353-1377.
[58] 王伟, 卢桂梅, 黄思访, 等, 2019. 扬子陆块古-中元古代地质演化与Columbia超大陆重建[J]. 矿物岩石地球化学通报, 38(1): 30-52 Wang W, Lu G M, Huang S F, et al. , 2019. Geological Evolution of the Yangtze Block in Paleo-to Meso-Proterozoic and Its Implication on the Reconstruction of the Columbia Supercontinent[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 30-52.
[59] Wang W, Zhou M F, Zhao X F, et al. , 2014. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China: Implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent[J]. Sedimentary Geology, 309: 33-47. DOI: 10.1016/j.sedgeo.2014.05.004
[60] Wang W, Cawood P A, Zhou M F, et al. , 2016. Paleoproterozoic magmatic and metamorphic events link Yangtze to northwest Laurentia in the Nuna supercontinent[J]. Earth & Planetary Science Letters, 433: 269-279.
[61] Wang W, Cawood P A, Pandit M K, 2021. India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks[J]. American Journal of Science, 321: 83-117. DOI: 10.2475/01.2021.02
[62] Wingate M T D, Pisarevsky S A, Gladkochub D P, et al. 2009. Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: Implications for Mesoproterozoic supercontinents and paleogeography[J]. Precambrian Research, 170: 256 − 266.
[63] Ye X T, Zhang C L, Santosh M, et al. , 2016. Growth and evolution of Precambrian continental crust in the southwestern Tarim terrane: New evidence from the ca. 1.4Ga A-type granites and Paleoproterozoic intrusive complex[J]. Precambrian Research, 275: 18-34. DOI: 10.1016/j.precamres.2015.12.017
[64] Zhang S H, Li Z X, Evans D A D, et al. , 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 353-354: 145-155. DOI: 10.1016/j.jpgl.2012.07.034
[65] Zhang S H, Zhao Y, Li X H, et al. , 2017. The 1.33-1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton[J]. Earth and Planetary Science Letters, 465: 112-125. DOI: 10.1016/j.jpgl.2017.02.034
[66] Zhao G C, Cawood P A, Wilde S A, et al. , 2002. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth Science Reviews, 59: 125-162. DOI: 10.1016/S0012-8252(02)00073-9
[67] Zhao G C, Sun M, Wilde S A, et al. , 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth Science Reviews, 67: 91-123. DOI: 10.1016/j.earscirev.2004.02.003
[68] Zheng R, Li J, Xiao W J, et al. , 2022. A combination of plume and subduction tectonics contributing to breakup of northern Rodinia: Constraints from the Neoproterozoic magmatism in the Dunhuang-Alxa Block, northwest China[J]. GSA Bulletin, 135: 1109-1126.
[69] Zhou M F, Zhao X F, Chen W T, et al. , 2014. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam[J]. Earth-Science Reviews, 139: 59-82 DOI: 10.1016/j.earscirev.2014.08.013
[70] Zou Y, Mitchell R N, Chu X, et al. , 2023. Surface evolution during the mid-Proterozoic stalled by mantle warming under Columbia–Rodinia[J]. Earth and Planetary Science Letters, 607: 118055. DOI: 10.1016/j.jpgl.2023.118055
-
期刊类型引用(2)
1. 梁锋,华丽娟,刘志强,费红彩,潘静. 地球科学进展与趋势——从构造演化、成矿机制、资源开发到新兴探测技术. 地质论评. 2025(02): 607-624 . 百度学术
2. 刘龙宇,崔晓庄,陈风霖,龙训荣,马志鑫,孙志明. 川西金口河新元古代辉绿岩的时代、成因及构造意义. 沉积学报. 2024(06): 1890-1902 . 百度学术
其他类型引用(0)