• The Core Journal of China
  • Included in Chinese Scientific and Technical Papers and Citations Database
  • Included in Chinese Science Citation Database (CSCD)
  • Included in Chemical Abstracts (CA)
  • Included in Scopus
Advanced Search
WEN Y,WEI H Y,ZOU Y,et al.,2025. Sedimentary facies and redox conditions of the Middle Jurassic Buqu Formation in Yisangri section, South Qiangtang Basin[J]. Sedimentary Geology and Tethyan Geology,45(1):31−47. DOI: 10.19826/j.cnki.1009-3850.2024.02001
Citation: WEN Y,WEI H Y,ZOU Y,et al.,2025. Sedimentary facies and redox conditions of the Middle Jurassic Buqu Formation in Yisangri section, South Qiangtang Basin[J]. Sedimentary Geology and Tethyan Geology,45(1):31−47. DOI: 10.19826/j.cnki.1009-3850.2024.02001

Sedimentary facies and redox conditions of the Middle Jurassic Buqu Formation in Yisangri section, South Qiangtang Basin

More Information
  • Received Date: January 22, 2024
  • Revised Date: January 28, 2024
  • Accepted Date: February 25, 2024
  • The Middle Jurassic Buqu Formation in the Qiangtang Basin represents marine carbonate sedimentation and is regarded as a promising reservoir. However, ongoing debates surround its earlier depositional environment and the ancient seawater redox conditions. This study focuses on the lower strata of the Buqu Formation in the Yisangri section of the South Qiangtang Basin, conducting a thorough analysis of lithofacies, sedimentary facies, and ancient water body redox conditions. The results are as follows: (1) In the Yisangri section of the Biluo Co area in the South Qiangtang Basin, the lower strata of the Buqu Formation reveal a distally steepen carbonate ramp deposition system, delineated into inner ramp, mid ramp, and outer ramp sedimentary subfacies. (2) Five lithofacies associations are identified, encompassing tempestite lithofacies, oncolite limestone lithofacies, slumping lens-body limestone lithofacies, nodular limestone lithofacies, and calcareous silt mudstone lithofacies. Additionally, 11 microfacies types are identified, including calcareous mudstone (MF1), mudstone (MF2), pelletoid mudstone (MF3), ooid wackstone (MF4), fecal pellet wackstone (MF5), oncolite wackstone (MF6), intraclast and pelletoid packstone (MF7), bioclastic packstone (MF8), intraclast grainstone (MF9), intraclast calcareous limestone (MF10), and intraclast rudstone (MF11). (3) The overall paleowater conditions in the Yisangri section of the Buqu Formation indicate a dysoxic–oxic environment, accompanied by a relatively low TOC content. The low TOC values may be associated with redox conditions, but they are more likely influenced by water nutrient levels and primary productivity. The TOC values in the lower part of the Buqu Formation suggest that the oil and gas of the dolomite reservoir did not originate from contemporaneous deep-water hydrocarbon source rocks but may have originated from deeper strata.

  • [1]
    Algeo T J,Kuwahara K,Sano H,et al.,2011. Spatial variation in sediment fluxes,redox conditions,and productivity in the Permian–Triassic Panthalassic Ocean[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,308(1 − 2):65 − 83.
    [2]
    Bond D P G,Wignall P B,2010. Pyrite framboid study of marine Permian–Triassic boundary sections:A complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin,122(7 − 8):1265 − 1279.
    [3]
    Burchette T P,Wright V P,1992. Carbonate ramp depositional systems[J]. Sedimentary Geology,79(1 − 4):3 − 57. DOI: 10.1016/0037-0738(92)90003-A.
    [4]
    陈明,孙伟,陈浩,等,2020. 西藏南羌塘鄂斯玛地区中侏罗统布曲组沉积特征及油气地质意义[J]. 沉积与特提斯地质,40(3):96 − 101.

    Chen M,Sun W,Chen H,et al.,2020. Sedimentary characteristics and oil-gas geological significance of the Middle Jurassic Buqu Formation in the Ersma area,Southern Qiangtang Basin,Tibet[J]. Sedimentary Geology and Tethyan Geology,40(3):96 − 101 (in Chinese with English abstract).
    [5]
    陈明,王剑,谭富文,等,2010. 藏北北羌塘坳陷中西部地区布曲组碳酸盐岩烃源岩分布特征[J]. 石油实验地质,32(2):181 − 185. DOI: 10.3969/j.issn.1001-6112.2010.02.015

    Chen M,Wang J,Tan F W,et al.,2010. The distributed characterisitic of middle Jurassic Buqu formation carbonate source rock in midwest area of north Qiangtang depression[J]. Petroleum Geology & Experiment.,32(2):181 − 185 (in Chinese with English abstract). DOI: 10.3969/j.issn.1001-6112.2010.02.015
    [6]
    陈文西,王剑,2009. 晚三叠世—中侏罗世羌塘盆地的形成与演化[J]. 中国地质,36(3):682 − 693.

    Chen W X,Wang J,2009. The formation and evolution of the Qiangtang Basin during the Late Triassic-Middle Jurassic period in northern Tibet[J]. Geology in China,36(3):682 − 693 (in Chinese with English abstract).
    [7]
    Dong C Y,Li C,Wan Y S,et al.,2011. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area,Tibet:Constraint on tectonic affinity and source regions [J]. Science China Earth Sciences,54(7):1034 − 1042.
    [8]
    Flügel E,Munnecke A,2010. Microfacies of carbonate rocks:analysis,interpretation and application [M]. Berlin:Springer.
    [9]
    付修根,陈明浩,王剑,等,2023. 羌塘盆地晚三叠世古地理反转及其对烃源岩的控制作用[J/OL]. 中国地质:1 − 19[2023-12-20].

    Fu X G,Chen M H,Wang J,et al.,2023. Late Triassic paleogeographic inversion and its control on source rocks in the Qiangtang Basin,Xizang (Tibet) [J/OL]. Geology in China:1 − 19[2023-12-20] (in Chinese with English abstract).
    [10]
    Fu, X. G., Wang, J., Tan, F. W., Chen, M., & Chen, W. B. 2010. The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China): Age and tectonic implications. Gondwana Research, 17(1), 135 − 144.
    [11]
    Gong Y M,Shi G R,Weldon E A,et al.,2008. Pyrite framboids interpreted as microbial colonies within the Permian Zoophycos spreiten from southeastern Australia[J]. Geological Magazine,145(1):95 − 103. DOI: 10.1017/S0016756807003974
    [12]
    Huang Y,Chen Z Q,Wignall P B,et al.,2017. Latest Permian to Middle Triassic redox condition variations in ramp settings,South China:Pyrite framboid evidence[J]. Geological Society of America Bulletin,129(1 − 2):229 − 243.
    [13]
    Lash G,2015. Pyritization induced by anaerobic oxidation of methane (AOM)–An example from the upper Evonian shale succession,western New York,USA[J]. Marine and Petroleum Geology,68:520 − 535. DOI: 10.1016/j.marpetgeo.2015.10.002
    [14]
    刘池洋,郑孟林,杨兴科,等,2016. 羌塘中生代海相盆地演化与后期改造及油气赋存[J]. 地质学报,90(11):23.

    Liu C Y,Zheng M L,Yang X K,et al.,2016. Evolution and Late Modification of Mesozoic Marine Qiangtang Basin and Its Hydrocarbon Occurrence[J]. Acta Geologica Sinica,90(11):23 (in Chinese with English abstract).
    [15]
    Muramoto J A,Honjo S,Fry B,et al.,1991. Sulfur,iron and organic carbon fluxes in the Black Sea:sulfur isotopic evidence for origin of sulfur fluxes[J]. Deep Sea Research Part A. Oceanographic Research Papers,38:S1151 − S1187. DOI: 10.1016/S0198-0149(10)80029-9
    [16]
    Ofuji M,Lovinger A J,Kloc C,et al.,2005. Organic semiconductor designed for lamination transfer between polymer films[J]. Chemistry of Materials,17(23):5748 − 5753. DOI: 10.1021/cm051616w
    [17]
    Raiswell R,Berner R A,1985. Pyrite formation in euxinic and semi-euxinic sediments[J]. American Journal of Science,285(8):710 − 724. DOI: 10.2475/ajs.285.8.710
    [18]
    Read J F,1982. Carbonate platforms of passive (extensional) continental margin-types,characteristics and evolution[J]. Tectonophysics,81:195 − 217. DOI: 10.1016/0040-1951(82)90129-9
    [19]
    Read J F,1985. Carbonate platform facies models[J]. American Association of Petroleum Geologists Bulletin,69:1 − 21.
    [20]
    Richard D,2019. Sedimentary pyrite framboid size-frequency distributions:A meta-analysis[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,522:62 − 75.
    [21]
    Roychoudhury A N,Kostka J E,Van Cappellen P,2003. Pyritization:a palaeoenvironmental and redox proxy reevaluated[J]. Estuarine,Coastal and Shelf Science,57(5 − 6):1183 − 1193. DOI: 10.1016/S0272-7714(03)00058-1
    [22]
    Sawlowicz Z,1993. Pyrite framboids and their development:a new conceptual mechanism[J]. Geologische Rundschau,82:148 − 156. DOI: 10.1007/BF00563277
    [23]
    Sawlowicz Z,Latkiewicz A,Stefaniak E,2005. Two-dimensional natural pyrite crystals and their formation[J]. Mineralogical Magazine,69(4):455 − 461. DOI: 10.1180/0026461056940263
    [24]
    Scholle P A,Ulmer-Scholle D S,2003. A color guide to the petrography of carbonate rocks:grains,textures,porosity,diagenesis [M]. AAPG Memoir 77. Tulsa:American Association of Petroleum Geologists.
    [25]
    沈安江,付小东,张建勇,等,2023. 羌塘盆地上三叠统—下侏罗统海相页岩油特征及发现意义[J]. 石油勘探与开发,50(5):962 − 974.

    Shen A J,Fu X D,Zhang J Y,et al.,2023. Characteristics and discovery significance of the Upper Triassic-Lower Jurassic marine shale oil in Qiangtang Basin,NW China[J]. Petroleum Exploration and Development,50(5):962 − 974 (in Chinese with English abstract).
    [26]
    Wacey D,Kilburn M R,Saunders M,et al.,2015. Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping[J]. Geology,43(1):27 − 30. DOI: 10.1130/G36048.1
    [27]
    Wei H,Algeo T J,Yu H,et al.,2015. Episodic euxinia in the Changhsingian (late Permian) of South China:evidence from framboidal pyrite and geochemical data[J]. Sedimentary Geology,319:78 − 97. DOI: 10.1016/j.sedgeo.2014.11.008
    [28]
    Wei H,Wang X,Shi X,et al.,2019. Iodine content of the carbonates from the Doushantuo Formation and shallow ocean redox change on the Ediacaran Yangtze Platform,South China[J]. Precambrian Research,322:160 − 169. DOI: 10.1016/j.precamres.2019.01.007
    [29]
    Wei H,Wei X,Qiu Z,et al.,2016. Redox conditions across the G–L boundary in South China:Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology,440:1 − 14. DOI: 10.1016/j.chemgeo.2016.07.009
    [30]
    Wei H,Zhang X,Qiu Z,2020. Millennial-scale ocean redox and δ13C changes across the Permian-Triassic transition at Meishan and implications for the biocrisis[J]. International Journal of Earth Sciences,109:1753 − 1766. DOI: 10.1007/s00531-020-01869-x
    [31]
    Wignall P B,Newton R,1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science,298:537 − 552. DOI: 10.2475/ajs.298.7.537
    [32]
    Wilkin R T,Arthur M A,2001. Variations in pyrite texture,sulfur isotope composition,and iron systematics in the Black Sea:Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta,65(9):1399 − 1416. DOI: 10.1016/S0016-7037(01)00552-X
    [33]
    Wilkin R T,Arthur M A,Dean W E,1997. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters,148:517 − 525. DOI: 10.1016/S0012-821X(97)00053-8
    [34]
    Wilkin R T,Barnes H L,1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta,60:4167 − 4179. DOI: 10.1016/S0016-7037(97)81466-4
    [35]
    万友利,王剑,谭富文,等,2017. 羌塘盆地隆鄂尼—昂达尔错地区布曲组白云岩储层成因及孔隙演化特征[J]. 东北石油大学学报,41(3):21 − 33+72.

    Wang Y L,Wang J,Tan F W,et al.,2017. Dolomite reservoir formation mechanism and pore evolution feature of the Buqu formation in the Long'eni-Angdaerco area,Qiangtang basin[J]. Journal of Northeast Petroleum University. 41(3):21 − 33+72+6 − 7 (in Chinese with English abstract).
    [36]
    王成善, 伊海生, 李勇, 等, 2001. 西藏羌塘盆地地质演化与油气远景评价[M]. 北京: 地质出版社.

    Wang C S,Yi H S,Li Y,et al.,2001. Geological evolution and prospective evaluation for oil and gas of the Qiangtang Basin,Tibet[M]. Beijing:Geological Publishing House.
    [37]
    Wang J,Ding J,Tan F W,et al.,2009. Investigation and evaluation of oil and gas resource strategic constituency in Qinghai-Tibet Plateau[M]. Beijing:Geological Publishing House:1 − 200.
    [38]
    王剑,王忠伟,付修根,等,2022. 青藏高原羌塘盆地首口油气科探井(QK-1)新发现[J]. 科学通报,67(3):321 − 328.

    Wang J,Wang Z W,Fu X G,et al.,2022. New discoveries on the first petroleum scientific drilling (QK-1) of the Qiangtang Basin,Tibetan Plateau[J]. Chinese Science Bulletin,67(3):321 − 328 (in Chinese with English abstract).
    [39]
    王亚曦,2021. 西藏荣玛地区南羌塘侏罗纪盆地沉积、物源分析及其构造意义[D]. 中国地质大学(北京).

    Wang Y X,2021. Sedimentary and provenance analysis of the Jurassic South Qiangtang Basin and its tectonic significance in Rongma area,Tibet [D]. China University of Geosciences (Beijing) (in Chinese with English abstract).
    [40]
    韦雪梅,韦恒叶,邱振,等,2017. 广西来宾蓬莱滩剖面 GL 界线草莓状黄铁微晶粒径特征及其氧化还原意义[J]. 地质科学,52(1):230 − 241.

    Wei X M,Wei H Y,Qiu Z,et al.,2017. Framboidal microcryst size characteristics of pyrite and its redox significance across the G-L boundary in Penglaitan section,Laibin,Guangxi[J]. Chinese Journal of Geology,52(1):230 − 241 (in Chinese with English abstract).
    [41]
    夏国清,季长军,杨伟,等,2016. 南羌塘坳陷中侏罗统布曲组油藏带流体包裹体特征与油气充注历史[J]. 石油学报,37(10):1247 − 1255.

    Xia G Q,Ji C J,Yang W,et al.,2016. Fluid inclusions characteristics and hydrocarbon charging history of oil reservoir belt in the Mid-Jurassic Buqu Formation,Southern Qiangtang depression[J]. Acta Petrolei Sinica, 37(10):1247 − 1255 (in Chinese with English abstract).
    [42]
    夏国清,伊海生,李高杰,等,2017. 南羌塘坳陷布曲组油藏带特征及空间演化规律[J]. 岩性油气藏,29(1):90 − 96.

    Xia G Q,Yi H S,Li G J,et al.,2017. Characteristics and evolution of oil reservoir zones of Buqu Formation in the southern Qiangtang Depression[J]. Lithologic Reservoirs,29(1):90 − 96 (in Chinese with English abstract).
    [43]
    伊海生,夏国清,2022. 羌塘盆地优质烃源岩和白云岩储油层的层位与分布[J]. 沉积与特提斯地质,42(3):455 − 464.

    Yi H S,Xia G Q,2022. Stratigraphic position of high-quality source rocks and distribution of oil-bearing dolomites in the Qiangtang Basin[J]. Sedimentary Geology and Tethyan Geology,42(3):455 − 464 (in Chinese with English abstract).
    [44]
    张劲松,2018. 西藏尼玛县荣玛乡南部莎巧木组沉积相分析[D]. 中国地质大学(北京).

    Zhang J S,2018. Analysis of sedimentary facies of Shaqiaomu Formation in southern Rongma Town,Nima County,Tibet[D]. China University of Geosciences (Beijing) (in Chinese with English abstract).
    [45]
    赵政璋,李永铁,王岫岩,等,2002. 羌塘盆地南部海相侏罗系古油藏例析[J]. 海相油气地质,2002(3):34 − 36+5.

    Zhao Z Z,Li Y T,Wang X Y,et al.,2002. A case analysis of the Jurassic marine destroyed reservoirs in southern part of Qangtang Basin,Qinghai-Tibet Plateau[J]. Marine Origin Petroleum Geology,2002(3):34 − 36+5 (in Chinese with English abstract).
    [46]
    王成善,伊海生,李勇,等,2001. 西藏羌塘盆地地质演化与油气远景评价[M]. 北京:地质出版社.

    Zhang J S, 2018. Analysis of sedimentary facies of Shaqiaomu Formation in southern Rongma Town, Nima County, Tibet[D]. China University of Geosciences (Beijing).
    [47]
    王剑,丁俊,谭富文,等,2009. 青藏高原油气资源战略选区调查与评价[M]. 北京:地质出版社:1 − 200.

    Zhao Z Z, Li Y T, Wang X Y, et al., 2002. A case analysis of the Jurassic marine destroyed reservoirs in southern part of Qangtang Basin, Qinghai-Tibet Plateau[J]. Marine Origin Petroleum Geology, 2002(3): 34 − 36+5.
  • Related Articles

    [1]LIU Zhongrong, CHEN Kongquan, FAN Zhiwei, HAN Jing, WU Hao, HE Zhiyong, ZHANG Douzhong, PANG Yizhen, MA Shuai. Lithofacies paleogeographic characteristics of the Middle Jurassic Buqu Formation in the northwest Qiangtang Basin[J]. Sedimentary Geology and Tethyan Geology, 2025, 45(1): 1-13. DOI: 10.19826/j.cnki.1009-3850.2024.04003
    [2]PENG Zhi-min, LIAO Zhong-li, ZHANG Yu-jie, CHEN Wen-bin. Characteristics and genesis of the oncolites from the Jurassic strata in the Qiangtang Basin[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(3): 109-112.
    [3]OU Chun-sheng, GENG Quan-ru, ZHU Tong-xing, PENG Zhi-min, LI Fen-qi. Neotectonic activities in the Qiangtang Basin and their geological and environmental effects[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(3): 90-94.
    [4]PENG Zhi-min, LIAO Zhong-li, CHEN Ming, LIU Jian-qing, ZHANG Yu-jie, CHEN Wen-bin, CONG Feng. Origin of the Jurassic dolostone reservoirs in the Qiangtang Basin on the Qinghai-Xizang Plateau[J]. Sedimentary Geology and Tethyan Geology, 2008, 28(4): 1-6.
    [5]NAN Zheng-bing, LI Yong-tie. Effects of the Cenozoic tectonism on the oil and gas preservation in the Qiangtang Basin[J]. Sedimentary Geology and Tethyan Geology, 2008, 28(1): 70-75.
    [6]QIU Dong-zhou, NAI Dong-zhuan, LI Xiao-qing, CHEN Ming. Analog and hydrocarbon potential of the Qiangtang Basin and other petroleum basins in the Asian Tethys[J]. Sedimentary Geology and Tethyan Geology, 2007, 27(3): 1-13.
    [7]LUO Jian-ning, ZHU Zhong-fa, XIE Yuan, FENG Xin-tao, YE He-fei, LI Yong-tie, SHEN Qi-ming, TONG Zhen-yan. The biohermites in the Qiangtang Basin and their sedimentary model[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(2): 51-62.
    [8]LUO Jian-ning, ZHU Zhong-fa, XIE Yuan, YE He-fei, TONG Zhen-yan, SHEN Qi-ming. The gypsolith and its bearings on the oil and gas exploration in the Qiangtang Basin in northern Xizang and southern Qinghai[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(2): 1-8.
    [9]DU Bai-wei, TAN Fu-wen, WANG Jian, WANG Xiao-long. The discovery and significance of the large-scale asphalt veins in the Qiangtang Basin, northern Xizang[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(1): 69-74.
    [10]LUO Jian-ning, XIE Yuan, WANG Xiao-long, ZHU Zhong-fa, TONG Zhen-yan, YE He-fei, LI Yong-tie. The preliminary study of petroleum geology of the Qiangtang Basin in northern Xizang[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(1): 1-15.

Catalog

    Article views (15) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return