• The Core Journal of China
  • Included in Chinese Scientific and Technical Papers and Citations Database
  • Included in Chinese Science Citation Database (CSCD)
  • Included in Chemical Abstracts (CA)
  • Included in Scopus
Advanced Search
LI Zhongxiong, MA Long, WEI Hongwei, YIN Wuhai, JIANG Huazhong, YE Tiansheng. Current advances of the 2D seismic exploration in the Qiangtang Basin: An overview[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(1): 96-111.
Citation: LI Zhongxiong, MA Long, WEI Hongwei, YIN Wuhai, JIANG Huazhong, YE Tiansheng. Current advances of the 2D seismic exploration in the Qiangtang Basin: An overview[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(1): 96-111.

Current advances of the 2D seismic exploration in the Qiangtang Basin: An overview

More Information
  • Received Date: December 07, 2017
  • Revised Date: May 15, 2018
  • Published Date: March 29, 2019
  • The present paper gives a detailed overview of current advances of the 2D seismic exploration in the Qiangtang Basin during the last twenty years or more. Besides the ambient noises, there exist several kinds of ground rolls, linear interferences, refraction waves and multiple refraction waves in the Basin. Both the ambient noises and ground rolls can be effectively suppressed when the geophone array length equals to 160 m long. However, as for the linear interferences, refraction waves and multiple refraction waves, the idealized suppressed results can't be acquired even when the geophone array length equals to 160 m long. The optimum excitation parameters for general vibroseis are indicated that the vibration patterns display the three-diesel vibrating every time, the drive level is 70%, the sweep frequencies range from 6 Hz to 84 Hz, and the sweep length is 18s. The optimum excitation parameters of low frequency vibroseis indicate that the vibration patterns display two-diesel vibrating every time, the drive level is 60%, the sweep frequencies range from 1.5Hz to 84 Hz, and the sweep length is 16s. The optimum excitation parameters of large-tonnage vibroseis are indicated that the vibration patterns display two-diesel vibrating every time, the drive level is 70%, the sweep frequencies range from 6Hz to 84 Hz, and the sweep length is 16s. The optimum excitation parameters of explosive sources include single-hole excitation at the depth of 7 m below the high-velocity layers (the least depth of 18 m for a shallow well) with the explosive volume of 18 kg in weight, two-hole array shooting at the depth of 15 m below the high-velocity layers with the explosive volume of 12 kg in weight, or three-hole array shooting at the depth of 12 m below the high-velocity layers with the explosive volume of 8 kg operated under unfavourable surface conditions in the Basin. Although the energy levels, signal-to-noise ratios, bandwidth and wavelet coherence of shooting recorded by vibroseis are not as good as those of explosive sources, the data acquired from the seismic profiles by using the high-density and high-fold wide line seismic acquisition technique may be identical to or superior to those of borehole explosives. Being an environmentally friendly, more safe, more economical, and high efficient operation mode, the high-density and high-fold wide line seismic acquisition technique with a combination of vibroseis and borehole explosives shot is much more suitable to the Qiangtang Basin. The layout chart by the vibroseis can be designed as 3L3S or 2L3S with a minimum fold of 960 times. The layout chart by borehole explosive shooting can be designed as 2L3S with a minimum fold of 360 times. Because of stable geo-tectonic conditions, the northern Qiangtang depression is more suitable for the seismic exploration while the southern Qiangtang depression may not be suitable for the seismic exploration due to its more complicated geo-tectonic conditions. Finally, the problems and suggestions about how to resolve the tundra static correlation and increase exciting and receiving efficiency are also proposed in this paper.
  • [1]
    赵政章,李永铁,叶和飞,等.青藏高原羌塘盆地石油地质[M].北京:科学出版社,2001.174-339.
    [2]
    李忠雄,杜佰伟,汪正江,等. 藏北羌塘盆地中侏罗统石油地质特征[J]. 石油学报, 2008, 29(6):797-803.
    [3]
    库新勃,吴青柏,蒋观利.青藏高原多年冻土区天然气水合物可能分布范围研究[J].天然气地球科学, 2007,18(4):588-592.
    [4]
    南卓铜,李述训,程国栋.未来50与100 a青藏高原多年冻土变化情景预测[J].中国科学D辑,地球科学,2004, 34(6):528-534.
    [5]
    黄继钧.藏北羌塘盆地构造特征及演化[J].中国区域地质,2001,20(2):178-186.
    [6]
    和钟铧、杨德明、李才.藏北羌塘盆地褶皱形变研究[J],中国地质,2003,30(4):357-360.
    [7]
    卢占武、高锐、匡朝阳,等.青藏高原羌塘盆地二维地震数据采集方法试验研究[J].地学前缘,2006,13(5):382-390.
    [8]
    卢占武、高锐、薛爱民,等. 羌塘盆地地震反射新剖面及基底构造浅析[J].中国地质,2006,33(2):286-290.
    [9]
    李忠雄,廖建河,程明道,等. 羌塘盆地托拉木-笙根地区地震采集技术试验[J]. 石油物探,2013,52(5):502-511.
    [10]
    Palaz I,Marfurt K J. Carbonate Seismology[M].Tulsa:USA Society of Exploration Geophysicists,1997.
    [11]
    郭建,魏福吉,吴长祥.利用盒子波技术设计野外观测系统[J].石油物探,2005,44(5):474-478.
    [12]
    凌云,张汝杰,高军等.方形排列干扰波调查方法研究[J].石油地球物理勘探,2000,35(2):175-154.
    [13]
    李忠雄,时代,雷扬,等. 运用盒子波技术压制羌塘盆地托拉木-笙根地区干扰波[J].石油地球物理勘探,2013, 48(1):1-6.
    [14]
    丁伟,胡立新,何京国,等. 可控震源高效地震采集技术研究及应用[J].石油物探,2014,53(3):338~343.
    [15]
    凌云,高军,孙德胜,等.可控震源在地震勘探中的应用前景与问题分析[J].石油物探,2008, 47(5):425~438.
    [16]
    曾鸾,李志勇,高凤珍.大吨位可控震源的应用及效果分析[J].石油物探,2002,41(3):327-333.
    [17]
    薛海飞,董守华,陶文朋.可控震源地震勘探中的参数选择[J].物探与化探,2010,34(2):185-190.
    [18]
    张惠利,张琳,刘平. 炸药震源和可控震源在厚层砾石层覆盖区中的试验对比研究[J].工程地球物理学报,2016,13(2):221-226.
    [19]
    潘树林,高磊,邹强,等.一种实现初至波自动拾取的方法[J].石油物探,2005,44(2):163-166.
    [20]
    潘树林,高磊,陈辉,等.可控震源记录地震初至拾取方法研究[J].石油物探,2010,49(2):209-212.
    [21]
    李庆忠,魏继东.论检波器横向拉开组合的重要性[J].石油地球物理勘探,2008,43(4):375-382.
    [22]
    刘依谋,梁向豪,黄有晖,等.库车坳陷复杂山地宽线采集技术及其应用效果[J].石油物探,2008,47(4):418-424.
    [23]
    赵殿栋.塔里木盆地大沙漠区地震采集技术的发展及展望——可控震源地震采集技术在MGT地区的试验及应用[J]. 石油物探,2015,54(4):367-375.
    [24]
    邸志新,丁伟,王增明,等. 复杂山前地带地震勘探采集技术的实践与认识[J]. 石油物探,2012,51(6):548-561.
    [25]
    云美厚.对镇巴复杂山地地震采集的思考[J].石油地球物理勘探,2006,41(5):504-513.
    [26]
    杨贵祥. 碳酸盐岩裸露区地震勘探采集方法[J].地球物理学进展,2005, 20(4):1108-1128.
    [27]
    于世焕,赵殿栋,秦都.桂中山区宽线地震采集观测系统优选[J].石油物探,2011, 50(4):398-405.
    [28]
    王栋,贺振华,孙建库,等.宽线加大基距组合技术在喀什北区块复杂山地的运用[J].石油物探,2010,49(6):606-610.
    [29]
    王家澄,王绍令,邱国庆.青藏公路沿线的多年冻土[J].地理学报, 1979,34(1):18-321.
    [30]
    王振国,陈笃恭.羌塘盆地静校正方法[J].石油地球物理勘探,1998,33(2):44-53.
    [31]
    钱荣钧.炸药震源激发效果分析[J]. 石油地球物理勘探,2003,38(6):66-73.583-588.
    [32]
    徐淑合,于静,胡立新,等.多级延迟爆炸震源的研究与应用[J].石油地球物理勘探,2003,38(4):341-357.
  • Related Articles

    [1]TIAN Chenghua, YANG Liqiang, HE Wenyan, ZHANG Shaoying, LIU Shentai, WU Cai. Characteristics of short wave infrared spectroscopy of sericite group minerals and their implications for exploration in the Yulong porphyry copper deposit, Tibet[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(1): 40-49. DOI: 10.19826/j.cnki.1009-3850.2022.01010
    [2]ZENG Qin-qin, WANG Yong-hua, YANG Jian. Application of the multi-scale wavelet analytical method: A case study of the Beiya iron-gold mining district in Yunnan[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(4): 100-105.
    [3]LI Lin-jing. Quantitative explanation of the opposite direction of internal wave propagation and sediment transport during the formation of internal wave and internal tide deposits[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 44-48.
    [4]WANG Ya-hui, ZHAO Peng-xiao, ZUO Qian-mei, ZHONG Ze-hong, LI Jun-liang. An application of the wavelet transformation to sequence stratigraphy: A case study of the Huangliu Formation in the Yinggehai Basin, northern South China Sea[J]. Sedimentary Geology and Tethyan Geology, 2011, 31(4): 58-63.
    [5]LI Hua, HE You-bin, LI Xiang-dong, LUO Jin-xiong, ZHENG Zhao-chang. Origin of the ripple marks from the Xujiajuan Formation of the Xiangshan Group in Ningxia[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(1): 18-24.
    [6]GE Jian-hua. The copper spectral overlapping interference for lead by full wavelength range direct reading ICP-AES:An experimental study[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(4): 96-99.
    [7]CHENG Xian-qiong, ZHU Jie-shou, CAI Xue-lin. The 3-D velocity structures of the Eurasian mantle based on the body wave tomography[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(2): 90-94.
    [8]SUI Shao-qiang, SUN Shang-ru. Hydrocarbon reservoir prediction of the Baozhong block, Baolang oil field, Yanqi Basin, Xinjiang using the inversion technique of wave impedance[J]. Sedimentary Geology and Tethyan Geology, 2001, 21(1): 33-37.
    [9]Cai Xiongfei, Li Chang'an, Gu Yansheng, Chen Bin, Guan Yandong. Genesis and comparative analysis of modern asymmetric ripple marks:an example from the eighth rock formation of the Lower Cretaceous strata in the Honggucheng region of the Minhe Basin[J]. Sedimentary Geology and Tethyan Geology, 1998, 18(1): 48-53.
    [10]Wang Yue. THE COMPUTER-PLOTTED PALAEOGEOGRAPHIC MAPS OF SOUTH CHINA[J]. Sedimentary Geology and Tethyan Geology, 1996, 16(5): 59-70.

Catalog

    Article views (484) PDF downloads (588) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return