• The Core Journal of China
  • Included in Chinese Scientific and Technical Papers and Citations Database
  • Included in Chinese Science Citation Database (CSCD)
  • Included in Chemical Abstracts (CA)
  • Included in Scopus
Advanced Search
ZHENG Ximin, YANG Liu, YI Dinghong, WANG Pu. Distrbution of gypsum and sulfur isotopes in the Palaeogene strata, western Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(4): 65-70.
Citation: ZHENG Ximin, YANG Liu, YI Dinghong, WANG Pu. Distrbution of gypsum and sulfur isotopes in the Palaeogene strata, western Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(4): 65-70.

Distrbution of gypsum and sulfur isotopes in the Palaeogene strata, western Qaidam Basin, Qinghai

More Information
  • Received Date: May 04, 2019
  • Revised Date: May 26, 2019
  • Published Date: December 29, 2019
  • The gypsoliths occur as part of the cap rocks of the oil and gas traps in the Qaidam Basin, Qinghai. In the light of the statistics of gypsum contents and 34SV-CDT values, the gypsum in the Palaeogene strata mainly occurs in the Shizigou depression and Xiaoliangshan depression near the Altun Mountains. Vertically, the gypsum contents display the cyclic distribution. The 34SV-CDT values show a rarely wide range of -23.3% to 71.4%. The initial 34S values are very low in the Altun Mountains. The increase of the reducing conditions and the fractionation of bacteria towards the Qaidam Basin leads to the great differences in the 34SV-CDT values. The main controlling factors include the initial 34SV-CDT values, supply rates of sulfates, and intensity of bacteria fractionation. It follows that the sulfates are derived from the Altun Mountains, and then enter into the Qaidam Basin through the Shizigou depression. The results of research in this study may be helpful to the study of the gypsum distribution, sedimentary environments of the Palaeogene salt lakes, and sulfate origins in the study area.
  • [1]
    魏菊英. 同位素地球化学[M]. 北京:地质出版社,1988.23-80.
    [2]
    李任伟,辛茂安. 东濮盆地蒸发岩的成因[J]. 沉积学报,1989, 7(4):141-147.
    [3]
    王国栋,程日辉,于民凤,等. 沉积物的矿物和地球化学特征与盆地构造、古气候背景[J]. 吉林大学学报:地球科学版,2006, 36(2):202-206.
    [4]
    Faure G. Principle of Isotope Geology[M]. New York:John Wiley & Sons,1986.117-199.
    [5]
    郑永飞,陈江峰. 稳定同位素地球化学[M]. 北京:科学出版社,2000.1-278.
    [6]
    陈道公,支霞臣,杨海涛. 地球化学[M]. 合肥:中国科学技术大学出版社,1994.98-111.
    [7]
    王春连,刘成林,徐海明,等. 湖北江陵凹陷古新统沙市组四段硫酸盐硫同位素组成及其地质意义[J],吉林大学学报(地球科学版),2013,43(3):691-703.
    [8]
    谭红兵,于升松. 我国湖泊沉积环境演变研究中元素地球化学的应用现状及发展方向[J]. 盐湖研究,1999,7(3):58-65.
    [9]
    彭立才,杨平,濮人龙. 陆相咸化湖泊沉积硫酸盐岩硫同位素组成及其地质意义[J],矿物岩石地球化学通报,1999,7(2):99-102.
    [10]
    赵加凡,陈小宏,金龙. 柴达木盆地第三纪盐湖沉积环境分析[J], 西北大学学报(自然科学版),2005,35(3):342-346.
    [11]
    史忠生,陈开远,石万忠. 东濮盐湖下第三系硫酸盐硫同位素组成分析[A]. 在汉部委属高校首届博士研究生联合论坛优秀论文集:资源、能源、环境与可持续发展类[C]. 武汉:中国地质大学出版社,2009.51-57.
    [12]
    史忠生,陈开远,史军,等. 东濮盐湖古近系硫酸盐硫同位素组成及地质意义[J]. 石油勘探与开发,2004,31(6):44-46.
    [13]
    洪业汤,张鸿斌,朱詠煊,等. 中国煤的硫同位素组成特征及燃煤过程硫同位素分馏[J]. 中国科学(B辑),1992,(8):868-873.
    [14]
    蔡春芳, 李开开,邬光辉,等. 硫同位素作为塔里木盆地油源对比和热化学硫酸盐还原作用的标志[A]. 第十一届全国有机地球化学学术会议论文摘要汇编[C]. 昆明:第十一届全国有机地球化学学术会议,2007.127-128.
    [15]
    Uyama F, Chiba H, Kusakabe M, Sakai H. Experimental details of sulfur isotope exchange reactions in the S2O32--H2S-SO42- system at hydrothermal temperatures[M]. Misosa, Tottoriken:Okayama Univ.,1985.
  • Related Articles

    [1]ZHANG Jian, WEN Yi, WU Jia-yang, LU Zheng-xiang, XIONG Chen-hao, WANG Xian-dong. High-quality conglomerate reservoirs from the Palaeogene Shahejie Formation in central Bohai Bay Basin[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(1): 89-95.
    [2]YANG Fan. The study of the Palaeogene-Neogene hydrocarbon reservoirs in the Sikeshu depression, Junggar Basin, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(4): 68-73.
    [3]CHEN Ji, SHI Ji'an, LONG Guo-hui, ZHANG Jian, WANG Mu, ZHOU Fei, ZOU Kai-zhen, MA Jin-ye, SHEN Yu-shan. Sedimentary facies and models for the Palaeogene-Neogene deposits on the northern margin of the Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(3): 16-26.
    [4]LIU Zhi-feng, JIN Zhen-kui, LU Yu-zhen, LU Yun-ying, ZHAO Yuan. Formation and distribution of the biogenic limestones from the Palaeogene Shahejie Formation in the Huanghua depression[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(3): 71-75.
    [5]XU LI-li, GUO Jing-Xing, ZHANG Jian, XI Zhu-gang, ZHANG Yong. Diagenesis of the Palaeogene clastic rocks in the Raoyang depression[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(2): 26-31.
    [6]ZHANG Da-zhi, JI You-liang, GU Jia-yu, CHU Li-lan, JI Li-dan. Palaeogene sequence stratigraphy and subtle hydrocarbon exploration in the Maxi region,Raoyang depression,Hebei[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(2): 1-7.
    [7]XIE Wu-ren, DENG Hong-wen, WANG Hong-liang, XU Chang-gui. Palaeogene reservoir rocks in central Bohai Gulf depression and their controls[J]. Sedimentary Geology and Tethyan Geology, 2008, 28(3): 101-107.
    [8]LIU Jiang, BAI Zhi-qiang. Palaeogene alluvial deposits in Liujing,Hengxian,Guangxi[J]. Sedimentary Geology and Tethyan Geology, 2008, 28(3): 89-95.
    [9]KUANG Hong-wei, LIU Jun-qi, QIN Han-sheng, CHEN Yong-qiao. Physical properties and influencing factors of the reservoir rocks in the lower part of the third member of the Palaeogene Shahejie Formation in the Shulu depression[J]. Sedimentary Geology and Tethyan Geology, 2008, 28(1): 88-95.
    [10]LI Xiao-yu, ZHENG Rong-cai, WEI Qinlian. Provenance analysis of the Palaeogene strata in the Huizhou depression, Zhujiangkou Basin, Guangdong[J]. Sedimentary Geology and Tethyan Geology, 2007, 27(4): 33-38.

Catalog

    Article views (249) PDF downloads (154) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return