• The Core Journal of China
  • Included in Chinese Scientific and Technical Papers and Citations Database
  • Included in Chinese Science Citation Database (CSCD)
  • Included in Chemical Abstracts (CA)
  • Included in Scopus
Advanced Search
CHEN Xuyu, LI Minghui, WANG Dewei, TIAN Kai, GAO Yanchao. Quantitative Evalution of geohazards susceptibility based on GIS and information value model for Emeishan City, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(4): 100-112.
Citation: CHEN Xuyu, LI Minghui, WANG Dewei, TIAN Kai, GAO Yanchao. Quantitative Evalution of geohazards susceptibility based on GIS and information value model for Emeishan City, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(4): 100-112.

Quantitative Evalution of geohazards susceptibility based on GIS and information value model for Emeishan City, Sichuan

More Information
  • Received Date: September 11, 2019
  • Revised Date: November 07, 2019
  • Published Date: December 29, 2019
  • Exemplified by Emeishan City, Sichuan, 10 factors are selected as the evaluation factors including slope gradient, slope height, slope direction, rock and soil type, geological structure, river erosion, surface cover, rainfall, engineering slope cutting and mineral exploration. On the basis of the grading analysis of the evaluation factors and GIS techniques, the geohazards susceptibility is evaluated for Emeishan City, Sichuan with the aid of the improved information value model. The results of research show that the information value model is scientific and reliable, and the evaluation results are in general agreement with the actual conditions. The geological hazards are best developed in high and steep slopes, hard thin-to thick-bedded sandstones, siltstone intercalated with dolostones, limestone formation and closely spaced structures. Topography, geomorphology and geological structures are believed to be the main factors controlling the geological hazards in this region. The susceptibility of the geological hazards may be classified into four grades:highly, moderately, low and extremely low susceptibility, with the covering areas of 169.37, 429.07, 363.43 and 221.12 km2, respectively. The precision of the susceptibility evaluation accounts for 74.80%. It can be seen that the evaluation method presented in this study may serve as a theorectical guide for the susceptibility evaluation of county-scale geological hazards, and the evaluation results may provide scientific data for the prevention and control of the geological hazards in the study area.
  • [1]
    李媛,曲雪妍,杨旭东等. 中国地质灾害时空分布规律及防范重点[J]. 中国地质灾害与防治学报,2013,24(4):71-78.
    [2]
    房浩,李媛,杨旭东等. 2010-2015年全国地质灾害发育分布特征分析[J]. 中国地质灾害与防治学报,2018,29(5):1-6.
    [3]
    丁俊,魏伦武,秦建华等. 西南地区地质灾害调查工作的思考[J]. 沉积与特提斯地质,2006,26(3):77-80.
    [4]
    杜国梁,张永双,高金川等. 基于GIS的白龙江流域甘肃段滑坡易发性评价[J]. 地质力学学报,2016,22(1):1-11.
    [5]
    谭玉敏,郭栋,白冰心等. 基于信息量模型的涪陵区地质灾害易发性评价[J]. 地球信息科学学报,2015,27(12):1554-1562.
    [6]
    张晓东,刘湘南,赵志鹏等. 信息量模型、确定性系数模型与逻辑回归模型组合评价地质灾害敏感性的对比研究[J]. 现代地质,2018,32(3):602-610.
    [7]
    刘艳芳,方佳琳,陈晓慧等. 基于确定性系数分析方法的秭归县滑坡易发性评价[J]. 自然灾害学报,2014,23(6):209-217.
    [8]
    王珂,郭长宝,马施民等. 基于证据权模型的川西鲜水河断裂带滑坡易发性评价[J]. 现代地质,2016,30(3):705-715.
    [9]
    刘宇恒,邓辉,熊倩莹. 基于层次分析法的茂县斜坡地质灾害易发性评价[J]. 长江科学院院报,2017,34(5):31-35.
    [10]
    王涛,吴树仁,石菊松等. 秦岭中部太白县地质灾害发育特征及危险性评估[J]. 地质通报,2013,32(12):1977-1983.
    [11]
    殷坤龙,晏同珍. 滑坡预测及相关模型[J]. 岩石力学与工程学报,1996,15(1):1-8.
    [12]
    殷坤龙,张桂荣. 地质灾害风险区划与综合防治对策[J]. 安全与环境工程,2003,10(1):32-35.
    [13]
    孟庆华,孙炜锋,王涛. 陕西凤县滑坡易发性评价研究[J]. 地质调查与研究,2013,36(2):136-145.
    [14]
    王佳佳,殷坤龙,肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价-以三峡库区万州区为例[J]. 岩石力学与工程学报,2014,33(4):797-808.
    [15]
    陈绪钰,李明辉,王德伟等. 采煤诱发地质灾害发育特征与成因机制[J]. 煤炭技术,2016,35(2):137-139.
  • Related Articles

    [1]LI Ying-yu, HUANG Yong-gao, HAN Fei, YAN Gang, YANG Xue-jun, LI Guang-ming, SONG Xu-bo, YANG Qing-song. The discovery and significance of the beryllium mineralization in the middle part of the central Gangdise metallogenic zone, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(4): 62-67.
    [2]YANG Yun-jun, LIANG Qun-feng, WANG Ming-zhi. Active fauls in the Jiaomuri area, Xizang and their geological implications[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(4): 105-110.
    [3]PENG Jian-hua, ZHAO Xi-liang, HE Jun, HUANG Shao-chun, GONG Chen. The discovery and significance of the Indosinian diorites in western Gangdise, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(1): 102-107.
    [4]YANG De-ming, HE Zhong-hua, ZHENG Chang-qing, WANG Tian-wu. Geological tourism resources in the Mamba region,Xizang[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(1): 109-112.
    [5]ZHANG Xiao-bao, ZHANG Xiong-hua, QIE Wen-kun, ZHANG Yang. Triassic trace fossils from Dinggye and Tingri,Xizang and their geological significance[J]. Sedimentary Geology and Tethyan Geology, 2008, 28(4): 101-105.
    [6]ZHANG Ren, HE Zhong-hua. The ages and tectonic setting of the Zaxoi-Mamba ductile shear zone in the Gangdise orogenic belt, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2007, 27(1): 19-24.
    [7]YONG Yong-yuan. Tin and tungsten:potential dominant mineral species in the Gangdise belt, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2007, 27(1): 1-8.
    [8]WEI Wen-tong, ZHUAN Shao-peng, ZHANG Zhen-li, LIU Hong-zhang, SUN Xiao, ZHANG Kuan. Delineation and geological implications of the Carboniferous strata in Burang,Xizang[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(3): 22-25.
    [9]XIA Qing, LIU Deng-zhong. Remote sensing interpretation of the evolution of the Ngangla Ringco Lake in northern Xizang[J]. Sedimentary Geology and Tethyan Geology, 2005, 25(4): 55-58.
    [10]ZHAO Peng-xiao, SHI He. Discussions on the Jurassic strata in the Coqen region, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(3): 40-43.

Catalog

    Article views (300) PDF downloads (148) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return