• The Core Journal of China
  • Included in Chinese Scientific and Technical Papers and Citations Database
  • Included in Chinese Science Citation Database (CSCD)
  • Included in Chemical Abstracts (CA)
  • Included in Scopus
Advanced Search
Liao Mingguang, Huang Zhiqiang, Liang Wenfeng, Liao Jijia, . Geological Characteristics and Genesis Analysis of Calcareous Intercalation Layer of Oil Group A in N Oilfield[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 26-34. DOI: 10.19826/j.cnki.1009-3850(2020)01-0026-09
Citation: Liao Mingguang, Huang Zhiqiang, Liang Wenfeng, Liao Jijia, . Geological Characteristics and Genesis Analysis of Calcareous Intercalation Layer of Oil Group A in N Oilfield[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 26-34. DOI: 10.19826/j.cnki.1009-3850(2020)01-0026-09

Geological Characteristics and Genesis Analysis of Calcareous Intercalation Layer of Oil Group A in N Oilfield

More Information
  • Received Date: October 22, 2019
  • Revised Date: January 27, 2020
  • Available Online: October 07, 2022
  • Published Date: March 29, 2020
  • In the process of oilfield development, the interlayer controls the law of oil and water movement, which plays an important role in controlling the remaining oil. In this paper, the oil group of the second section of the TF formation in the N oilfield is taken as the research object. Through the comprehensive analysis of the thin section, core test, logging, carbon and oxygen isotope, the distribution characteristics, petrological characteristics, physical properties and measurement of the calcareous interlayer are studied. The study shows that three sets of calcareous interbeds are developed vertically in the A oil group. The lithology is mainly composed of terrigenous clastic bioclastic limestone, followed by calcareous quartz sandstone, and the bioclastic is mainly composed of brachiopods and gastropods, with a small amount of echinoderms, foraminifera, flaps and gills, red algae, ostracods, bryozoans, etc. It mainly develops in foreshore beach bar deposits. The diagenesis is mainly cementation, and the cement type includes early calcite cement, medium-term iron calcite cement, and late iron dolomite cement. Carbon and oxygen isotope analysis shows that carbon mainly comes from seawater during deposition, while a small amount of it comes from atmospheric fresh water and organic acid. Ca2+ mainly comes from biological debris, followed by calcium feldspar dissolution and hydration of aluminosilicate minerals.
  • [1]
    张吉,张烈辉,胡书勇,等. 陆相碎屑岩储层隔夹层成因、特征及其识别[J]. 测井技术,2003(03):221-224+265.
    [2]
    姜平,黄俊辉,雷霄,等. 文昌A油田珠二段I油组隔夹层分布研究[J]. 西南石油大学学报(自然科学版),2014,36(01):19-26.
    [3]
    裘亦楠. 中国陆相碎屑岩储层沉积学的进展[J]. 沉积学报, 1992(03):16-24.
    [4]
    宋璠,苏妮娜. 辽河油田锦99块扇三角洲前缘储层隔夹层成因与分布[J]. 沉积与特提斯地质,2014,34(02):65-71.
    [5]
    周学慧,丁文龙,昌伦杰,等. "三端员定型冶法识别滨岸相砂岩储层隔夹层:以塔里木盆地哈得逊油田东河砂岩为例[J]. 地学前缘,2017,24(05):328-338.
    [6]
    陈伟,何俊富,杨斌,等. DH油田隔夹层测井识别研究[J]. 物探化探计算技术,2011,33(02):202-206+109.
    [7]
    崔建,李海东,冯建松,等. 辫状河储层隔夹层特征及其对剩余油分布的影响[J]. 特种油气藏,2013,20(04):26-30+152.
    [8]
    田洋,卢宗盛,权英哲,等. 辽河盆地大民屯凹陷沈95区块砂岩储层中钙质夹层研究[J]. 岩石矿物学杂志,2009,28(02):152-160.
    [9]
    封从军,单启铜,时维成,等. 扶余油田泉四段储层非均质性及对剩余油分布的控制[J]. 中国石油大学学报(自然科学版), 2013,37(01):1-7.
    [10]
    李红英,王欣然,陈善斌,等. 层内夹层对海上聚合物驱油田剩余油分布影响[J]. 特种油气藏,2018,25(05):135-140.
    [11]
    加东辉,杨香华,吴小红,等. 中等井网密度控制下的浅水三角洲相隔夹层研究——以渤中25-1南油田为例[J]. 油气地质与采收率,2005(02):19-22+82.
    [12]
    王洋,刘婧,汪建国,等. 塔里木盆地东河1油藏东河砂岩隔夹层形成的主控因素及流体来源[J]. 石油学报,2015,36(02):174-181.
    [13]
    徐寅,徐怀民,郭春涛,等. 隔夹层成因、特征及其对油田开发的影响——以塔中地区海相砂岩储层为例[J]. 科技导报, 2012,30(15):17-21.
    [14]
    ODIGIMI, AMAJORLC. Geochemistry of carbonate cements in Cretaceous sandstones, southeast Benue Trough, Nigeria:implications for geochemical evolution of formation waters[J]. Journal of African Earth Sciences, 2010,57(3):213-226.
    [15]
    MANSURBEGH, DeROSLF, MORADS, et al. Meteoric-water diagenesis in late Cretaceous canyon-fill turbidite reservoirs from the Esp侏rito Santo Basin, eastern Brazil[J]. Marine and Petroleum Geology, 2012, 37(1):7-26.
    [16]
    MANSOUR A S, RIFAIRI, SHAABANMN. Geochemical constraint on the origin of the multi-mineralogic carbonate cements in the subsurface Middle Jurassic sandstones, Central Sinai, Egypt[J]. Journal of Geochemical Exploration, 2014,143(3):163-173.
    [17]
    严耀祖,段天向. 厚油层中隔夹层识别及井间预测技术[J]. 岩性油气藏,2008(02):127-131.
    [18]
    王延章,林承焰,董春梅,等. 夹层及物性遮挡带的成因及其对油藏的控制作用——以准噶尔盆地莫西庄地区三工河组为例[J]. 石油勘探与开发,2006(03):319-321+325.
    [19]
    林承焰,侯连华,董春梅,等. 辽河西部凹陷沙三段浊积岩储层中钙质夹层研究[J]. 沉积学报,1996,14(3):73-79.
    [20]
    李珊珊,彭松,陈林,等. 珠江口盆地西部文昌B凹陷晚始新-早渐新世复杂储层沉积特征及低渗成因探讨[J]. 现代地质,2019,33(02):357-369.
    [21]
    张迎朝,陈志宏,李绪深,等. 珠江口盆地文昌B凹陷及周边油气成藏特征与有利勘探领域[J]. 石油实验地质,2011,33(03):297-302.
    [22]
    雷霄,胡余,梁文锋,等. 文昌19-1油田珠江组二段玉油组沉积相研究[J]. 西南石油大学学报(自然科学版),2015,37(04):1-12.
    [23]
    叶茂松,解习农,徐长贵,等. 混积岩分类命名体系探讨及对混积岩储层评价的启示——以渤海海域混积岩研究为例[J]. 地质论评,2018,64(05):1118-1131.
    [24]
    王琪,郝乐伟,陈国俊,等. 白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理[J]. 石油学报,2010,31(04):553-558+565.
    [25]
    陈荣坤. 稳定氧碳同位素在碳酸盐岩成岩环境研究中的应用[J]. 沉积学报,1994(04):11-21.
    [26]
    Keith M L, Weber J N. C arbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosm ochimica Acta, 1964, 28(10/11):1786-1816.
    [27]
    宁括步,毛世东,梁龙飞,等. 川西甘孜-理塘结合带碳酸盐岩碳氧同位素特征[J]. 沉积与特提斯地质,2018,38(03):106-112.
    [28]
    Kelts K, Talbot M R. Lacustrine carbonates as geochemical archives of environm ental change and biotic abiotic interactions[M]. Tilzer M M, Ser-ruya C. Ecological structure and Function in Large Lakes. M adison:Wis. Science Tech, 1990:290-317.
    [29]
    Irw in H,Curtis C,Coleman M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sedim ents[J]. Nature, 1977, 269(5625):209-212.
    [30]
    陈金定,周晓林,钟国楼,等. 琼海凸起珠江组砂岩钙质层成岩模式探讨[J]. 西南石油大学学报(自然科学版),2011,33(04):27-32+186.
    [31]
    严科,赵红兵. 三角洲前缘储层中钙质夹层分布及成因探讨[J]. 西南石油大学学报(自然科学版),2014,36(01):33-38.
    [32]
    张玥. 柴达木盆地北缘西段第三系沉积储层砂岩的成岩作用研究[D]. 成都理工大学,2010.
  • Related Articles

    [1]HE Yunlong, WANG Liqiang, LUOSANG Taqing, LI Baoliang, GAO Teng. Metallogenic material source of the Qielong copper-gold mineralization occurrence in the western Bangong-Nujiang metallogenic belt: Constraints from in-situ sulfur isotopes of ore sulfides[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(4): 683-696. DOI: 10.19826/j.cnki.1009-3850.2024.09004
    [2]CHENG Yanxun, ZHAO Mengsheng, ZHANG Ya, XU Lei, XU Jie, HUANG Jiazhong, YANG Minglong, TU Chunlin, LI Yiying. Sources analysis and ecological risk assessment of soil heavy metals and metalloids in Yao'an area of central Yunnan[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(1): 172-184. DOI: 10.19826/j.cnki.1009-3850.2023.02005
    [3]YUAN Jianfei, DENG Guoshi, LIU Huizhong. Characteristics of rare earth elements in boron-rich thermal waters of the Xianshuihe Fault Belt Zone and its indication to the sources of boron[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(2): 428-441. DOI: 10.19826/j.cnki.1009-3850.2023.04002
    [4]LENG Qiufeng, LI Wenchang, DAI Chenglong, TANG Pan, CHEN Ming. Sulfur and lead isotope composition tracing for the ore-forming material source of Nachatang Pb-Zn deposit in Tibet[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(1): 168-179. DOI: 10.19826/j.cnki.1009-3850.2022.01014
    [5]GAO Ke, SONG Yang, LIU Zhibo, YANG Huanhuan, WANG Yiyun. Sulfur and lead isotope composition and tracing for sources of ore-forming materials in the Naruo Cu(Au) deposit, in Tibet[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(1): 145-155. DOI: 10.19826/j.cnki.1009-3850.2021.05002
    [6]YANG Lifei, LI Zenghua, OUYANG Yongpeng, DENG Teng, DENG Youguo, MENG Delei, ZHENG hua. Research progress and prospect of vanadium deposits[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(1): 48-58. DOI: 10.19826/j.cnki.1009-3850.2022.03002
    [7]ZHANG Chuanyu, LI Wenchang, YU Haijun, LI Wanting, LUO Jianhong, SHA Jianze, WU Qinghua, PAN Zewei. Sphalerites Rb-Sr Dating and geological significance of the Shuitoushan Pb-Zn deposit in Yunnan Province,SW China[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(1): 122-132. DOI: 10.19826/j.cnki.1009-3850.2022.01006
    [8]ZHANG Tengjiao, LIU Hong, OUYANG Yuan, HUANG Hanxiao, ZHANG Jinghua, LI Fu, XIAO Qiliang, ZENG Jian, HOU Qian, WEN Dengkui, Duan Shengyi. A preliminary discussion on the physical and chemical characteristics and main controlling factors of soil and parent material in the middle and high mountain area——Take Xichang as an example[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 106-114. DOI: 10.19826/j.cnki.1009-3850(2020)01-0106-09
    [9]WANG Shang-yan, LIU Jia-ren. The fluorine sources in the endemic fluorosis areas,western Guizhou[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(3): 72-76.
    [10]WANG Feng, HE Ming-you. Lead and sulfur isotopic tracing of the ore-forming material from the Baiyangping copper-silver polymetallic deposit in Lanping, Yunnan[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(2): 82-85.

Catalog

    Article views (26) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return