Advanced Search
    Zhangyujie, Menglifeng, Chenwei, Yuyangli, Yingjiamei. A study on the late Indosinian tectonic activity of the south part of Longmenshan: constraints from structural analyses and detrital zircon chronology[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 82-90. DOI: 10.19826/j.cnki.1009-3850(2020)01-0082-09
    Citation: Zhangyujie, Menglifeng, Chenwei, Yuyangli, Yingjiamei. A study on the late Indosinian tectonic activity of the south part of Longmenshan: constraints from structural analyses and detrital zircon chronology[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 82-90. DOI: 10.19826/j.cnki.1009-3850(2020)01-0082-09

    A study on the late Indosinian tectonic activity of the south part of Longmenshan: constraints from structural analyses and detrital zircon chronology

    More Information
    • Received Date: October 11, 2019
    • Revised Date: January 23, 2020
    • Published Date: March 29, 2020
    • The Indosinian tectonic event played an important role in the formation and evolution of the Longmenshan thrust belt. In order to depict the structural characteristic of the southern section of the Longmenshan thrust belt during the late Indosinian epoch, integration of structural analysis and forward modeling of seismic section and detrital zircon U-Pb chronology analyses from the piedmont belt are used in this study. The results show that, the provenance of the syntectonic sediments from the southern section of the Longmenshan thrust belt was affinity to the Songpan-Ganzi block, thus most likely from the Qinling Orogenic Belt and the recycling of the folded Middle to Lower Triassic strata of Songpan-Ganzi block. The balanced restoration of the seismic section reveals a. 1.7 km shortening at the southern section of the Longmenshan thrust belt, which is weaker than that of middle and north part of Longmenshan thrust belt. Combined with the regional geological data, the tectonic activity of Longmenshan thrust belt during Indosinian was migrated from north to south, thus the piedmont zone of southern section of the Longmenshan thrust belt can receive material from the recycled Middle to Lower Triassic of Songpan-Ganzi block.
    • [1]
      王振南,鲁人齐,徐锡伟,何登发,蔡明刚,李英强,罗佳宏. 龙门山中段山前彭县隐伏活动断裂三维构造特征[J]. 地震地质,2019,41(04):944-959.
      [2]
      贾霍甫,曹波,欧奎. 川西绵竹地区构造特征及对油气成藏控制作用[J]. 地质学刊,2019,43(01):18-24.
      [3]
      梁瀚,肖富森,冉崎,关旭,韩嵩,陈骁,狄贵东,谢枕,刘冉. 四川盆地龙门山前复杂构造带北段精细构造建模及对油气勘探的启示[J]. 天然气工业,2018,38(11):26-32.
      [4]
      杨跃明,陈聪,文龙,陈骁,粱瀚,刘冉,关旭,罗冰,谢忱. 四川盆地龙门山北段隐伏构造带特征及其油气勘探意义[J]. 天然气工业,2018,38(08):8-15.
      [5]
      范增辉,刘树根,范存辉,胡林辉,李文佳,米鸿,韩翀,韩小俊. 龙门山褶皱冲断带典型地震剖面平衡剖面恢复及构造演化分析[J]. 地质论评,2018,64(02):347-360.
      [6]
      Burchfiel, B. C., Chen, Z., Liu, Y., et al. Tectonics of the Longmen Shan and adjacent regions[J]. International Geology Review, 1995, 37, 661-735.
      [7]
      罗啸泉,郭卫星,吕志洲. 龙门山构造变形与油气关系探讨[J]. 沉积与特提斯地质,2016,36(04):71-76.
      [8]
      Rolf, M., Walter, M. Weakness of the lower continental crust:a condition for delamination, uplift, and escape[J]. Tectonophysics, 1998, 296(1-2), 47-60.
      [9]
      汪泽成,赵文智,张林等. 四川盆地构造层序与天然气勘探[M]. 地质出版社(北京). 2002, 1-287.
      [10]
      Mathew, J.,Harrowfield, Christopher, J. L., Wilson. Indosinian deformation of the Songpan Garze Fold Belt, northeast Tibetan Plateau[J]. Journal of Structural Geology, 2005, 27, 101-117.
      [11]
      Jia, D., Wei, G. Q., Chen, Z. X., et al. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in Central China:New insights from hydrocarbon exploration[J]. AAPG, 2006, 90(9), 1425-1447
      [12]
      WANG, E., MENG, Q. R. Mesozoic and Cenozoic tectonic evolution of the Longmenshan fault belt[J]. Science in China Series D:Earth Sciences, 2009, 52(5), 579-592.
      [13]
      邓飞, 贾东, 罗良等. 晚三叠世松潘甘孜和川西前陆盆地的物源对比:构造演化和古地理变迁的线索[J]. 地质论评. 2008. 54(4):145-157
      [14]
      戴建全. 龙门山冲断带构造变形期次及动力学成因[J]. 西南石油大学学报. 2011, 33(2):61-67
      [15]
      刘树文,杨恺,李秋根,王宗起,闫全人. 新元古代宝兴杂岩的岩石成因及其对扬子西缘构造环境的制约[J]. 地学前缘,2009,16(02):107-118.
      [16]
      刘春平,林娟华. 龙门山造山带彭灌杂岩体形成模式研究[J]. 内蒙古石油化工,2008,34(19):1-4.
      [17]
      黄丽飞,楼章华,陈明玉,朱蓉,王君. 川西坳陷新场构造带须家河组超压演化与流体的关系[J]. 地质通报,2018,37(05):954-964
      [18]
      刘崇瑞,颜丹平,李书兵. 川西坳陷大邑构造须三段储层裂缝类型及控制因素[J]. 断块油气田,2014,21(01):28-31.
      [19]
      张宇坤. 物源分析方法[J], 地下水. 2013,35(5):174-187
      [20]
      U-Pb同位素定年技术及其地质应用潜力[J]. 周红英,李惠民. 地质调查与研究. 2011(01).
      [21]
      Zhu, M., Chen, H. L., Zhou, J., et al. Provenance change from the Middle to Late Triassic of the southwestern Sichuan basin, Southwest China:Constraints from the sedimentary record and its tectonic significance[J]. Tectonophysics, 2017,700,92-107
      [22]
      Hu, Z. C., Zhang, W., Liu, Y. S., Gao, S., Li, M.,Zong, K. Q., Chen, H. H., Hu, S. H., 2015. " Wave冶signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:application to lead isotope analysis. Analytical Chemistry, 87, 1152-1157.
      [23]
      Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G.,Zong, K. Q., Wang, D. B., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology 51, 537-571.
      [24]
      Liu, Y. S., Hu, Z. C., Gao, S.,Gu-nther, D., Xu, J., Gao, C. G., Chen, H. H., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard. Chemical Geology 257, 34-43.
      [25]
      Ludwig, K. R., 2003. ISOPLOT 3. 00:AGeochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 39 pp.
      [26]
      何登发,John SUPPE,贾承造. 断层相关褶皱理论与应用研究新进展[J]. 地学前缘,2005(04):353-364.
      [27]
      王丽宁,陈竹新,李本亮,雷永良,闫淑玉. 龙门山冲断带北段构造解析及有利区带预测[J]. 石油勘探与开发,2014,41(05):539-545.
      [28]
      Hou, Z. Q., Qu, X. M., Yang, Y. Q., 2001. Collision orogeny in the Yidun arc:evidence from granites in the Sanjiang region, China. Acta Geol. Sin. 75, 484-497.
      [29]
      Reid, A., Wilson, C. J. L., Shun, L., Pearson, N., Bel ousova, E., 2007. Mesozoic plutons of the Yidun arc, SW China:U-Pb geochronology and Hf isotopic signature. Ore Geol. Rev. 34, 88-106.
      [30]
      Dong, Y. P., Zhang, G. W., Neubauer, F., Liu, X. M., Genser, J., Hauzenberger, C., 2011. Tectonic evolution of the Qinling orogen, China:review and synthesis. J. Asian Earth Sci. 41, 213-237.
      [31]
      Amy L. Weislogel; Stephan A. Graham; Edmund Z. Chang; Joseph L. Wooden;George E. Gehrels;Hengshu Yang. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex:Sedimentary record of collision of the North and South China blocks:Comment and Reply:REPLY[J]. Geology, 2006, Vol. 34(1):e107-e108.
      [32]
      McKerrow W S, Mac Niocaill C and Dewey J F. (2000) The Caledonian orogeny redefined:Journal of the Geological Society, 157:1149-1154.
      [33]
      Kr ner A, Zhang G W and Sun Y. (1993) Granulites in theTongbai area, Qinling Belt, China:Geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia:Tectonics, 12:245-255.
      [34]
      张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学. 北京:科学出版社, 2001.
      [35]
      张宗清, 宋彪, 唐索寒,等, 2004. 秦岭佛坪变质结晶岩系年龄和物质组成特征-SHRIMP锆石U-Pb年代学和全岩Sm-Nd年代学数据. 中国地质, 31:161-168.
      [36]
      Li Z X, Li X H,Kinny P. D, et al., 2003. Geoehronology of NeoProterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122:85-109.
      [37]
      Greentree, M R, Li Z X, Li X H., et al., 2006. Late MesoProterozoic to earliest NeoProterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia-Precambrian Research, 151:79-100.
      [38]
      Ye M I, Li X H, Li W X, et al., 2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early NeoProterozoic Sibaoan magmatic arc along the southeastern margin of theYangtze Block. Gondwana Researeh.
      [39]
      李明龙,田景春,方喜林,郑德顺,许克元,陈林,曹文胜,赵军,冉中夏. 鄂西走马地区大塘坡组顶部泥岩碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 沉积与特提斯地质, 2019,39(01):22-31.
      [40]
      王冬兵, 孙志明, 尹福光, 王立全, 王保弟, 张万平, 2012. 扬子地块西缘河口群的时代:来自火山岩锆石LA-ICP-MS U-Pb年龄的证据. 地层学杂志, 36:630-635.
      [41]
      Zhao X F, Zhou M F, Li J W, Sun M, Gao J F, Sun W H and Yang J H. 2010. Late Paleoproterozoic to Early Mesoproterozoic DongchuanGroup in Yunnan, SW China:Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182:57-69.
      [42]
      陈扬, 刘树根, 李智武,等, 2011. 川西前陆盆地晚三叠世早期物源与龙门山的有限隆升:碎屑锆石U-Pb年代学研究. 大地构造与成矿学, 35:315-323.
      [43]
      Luo L, Qi J F, Zhang M Z, Wang K, Han Y Z. (2013) Detrital zircon U-Pb ages of Late-Jurassic deposits in the western and northern Sichuan Basin margin:constraints on the foreland basin provenance and tectonic implications. International journal of Earth Sciences, 103:553-1568.
      [44]
      Weislogel A L, Graham S A, Chang E Z, 2010. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China:Record of collisional tectonics, erosional exhumation, and sediment production. Geological Society of America Bulletin. 122:2041-2062.
      [45]
      Ding L, Yang D,Cai F L, Pullen A, Kapp P, Gehrels G E, Zhang L Y, Zhang Q H, Lai Q Z, Yue Y H, Shi R D. (2013) Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet:Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics, 32:34-48.
      [46]
      Zhu, X. Y., Chen, F. K., Li, S. Q., Yang, Y. Z., Nie, H., Siebel, W., Zhai, M. G., 2011. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China:evidence from detrital zircon U-Pb ages and Hfisotopic composition. Gondwana Res. 20, 194-204.
      [47]
      Shi, Y., Yu, H. J., Santosh, M., 2013. Tectonic evolution of theQinling orogenic belt, Central China:new evidence from geochemical, zircon U-Pb geochronology and Hf isotopes. Precambrian Res. 231, 19-60.
      [48]
      Gehrels, G., Kapp, P., DeCelles, P., 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 30, 1-27.
      [49]
      Chen, Q., Sun, M., Long, X., Zhao, G., Yuan, C., 2015. U-Pb ages and Hf isotopic record of zircons from the late Neoproterozoic and Silurian-Devonian sedimentary rocks of the western Yangtze Block:implication.
    • Related Articles

      [1]ZHAN Haipeng, GUO Qinghai. Speciation of arsenic and antimony in geothermal water affected by their competitive hiolation: A case study in several typical Ali hydrothermal areas, Tibet[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(2): 442-451. DOI: 10.19826/j.cnki.1009-3850.2023.05002
      [2]QING Chengshi, ZHANG Zhi, ZHANG Linkui, LI Guangming, DONG Suiliang, WANG Yiyun, GAO Ke. The element zonation characteristics of No. XV ore body in Zhaxikang lead-zinc polymetallic deposit, Tibet[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(1): 130-144. DOI: 10.19826/j.cnki.1009-3850.2022.09002
      [3]LIU Hong, HUANG Hanxiao, ZHANG Linkui, LI Guangming, OUYANG Yuan, HUANG Yong, LÜ Menghong, LAN Shuangshuang. Luerma, a newly discovered late Triassic porphyry copper-gold ore-spot in the western Gangdise metallogenic belt, Tibet[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(4): 599-611. DOI: 10.19826/j.cnki.1009-3850.2020.06001
      [4]DONG Guochen, MO Xuanxue, ZHAO Zhidan, ZHU Dichen. A response of volcanic rocks to the India-Asia continental collision: A case study on Linzizong volcanic rocks in Linzhou, Tibet[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(2): 332-339. DOI: 10.19826/j.cnki.1009-3850.2021.03004
      [5]CI Qiong, YONGZHONG Lada, AWANG Danzeng, CI Renji. Zircon U-Pb dating for the Quxu granitic complex in the Gangdise belt, Tibet, and its geological significance[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(2): 116-128. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0116-13
      [6]LI Ying-yu, HUANG Yong-gao, HAN Fei, YAN Gang, YANG Xue-jun, LI Guang-ming, SONG Xu-bo, YANG Qing-song. The discovery and significance of the beryllium mineralization in the middle part of the central Gangdise metallogenic zone, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(4): 62-67.
      [7]PENG Jian-hua, ZHAO Xi-liang, HE Jun, HUANG Shao-chun, GONG Chen. The discovery and significance of the Indosinian diorites in western Gangdise, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(1): 102-107.
      [8]YONG Yong-yuan. Tin and tungsten:potential dominant mineral species in the Gangdise belt, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2007, 27(1): 1-8.
      [9]GENG Quan-ru, PAN Gui-tang, WANG Li-quan, ZHU Di-cheng, LIAO Zhong-li. Isotopic geochronology of the volcanic rocks from the Yeba Formation in the Gangdise zone,Xizang[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(1): 1-7.
      [10]LI Guang-ming, FENG Xiao-liang, HUANG Zhi-ying, GAO Da-fa. The multiple island arc-basin systems and their evolution in the Gangdise tectonic belt, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2000, 20(4): 38-46.

    Catalog

      Article views (247) PDF downloads (188) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return