• The Core Journal of China
  • Included in Chinese Scientific and Technical Papers and Citations Database
  • Included in Chinese Science Citation Database (CSCD)
  • Included in Chemical Abstracts (CA)
  • Included in Scopus
Advanced Search
CI Qiong, YONGZHONG Lada, AWANG Danzeng, CI Renji. Zircon U-Pb dating for the Quxu granitic complex in the Gangdise belt, Tibet, and its geological significance[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(2): 116-128. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0116-13
Citation: CI Qiong, YONGZHONG Lada, AWANG Danzeng, CI Renji. Zircon U-Pb dating for the Quxu granitic complex in the Gangdise belt, Tibet, and its geological significance[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(2): 116-128. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0116-13

Zircon U-Pb dating for the Quxu granitic complex in the Gangdise belt, Tibet, and its geological significance

More Information
  • Received Date: March 11, 2020
  • Revised Date: May 18, 2020
  • Published Date: June 29, 2020
  • The Quxu granitic complex is located at the southern margin of the eastern Gangdise tectonic-magmatic belt. Magmatic activities of the Quxu granitic complex were closely related to the northward subduction of the Neotethys and the Indo-Asian collision. In this paper, a systematic study of LA-ICP-MS zircon U-Pb geochronology and petrochemistry have been carried out on the intermediate-acidic granites widely distributed in the Changguo village, east of Quxu county. The results show that the Quxu complex is characterized by three stages of granitoids with different ages and scales. The zircon U-Pb ages of LA-ICP-MS are 95.2 ±1.0 ~ 88.5 ±1.0Ma, 65.2 ±0.6Ma and 48.5 ±0.5 ~ 43.3 ±0.7Ma, respectively. The results of petrochemistry show that the late Cretaceous and Paleocene granites are mainly neutral to intermediate-acidic, calc-alkaline series, with the characteristics of medium aluminum, A/CNK less than 1.1, belonging to I-type granites, which are the products of partial melting of basaltic lower crust formed in the arc tectonic setting during the subduction of the Tethyan oceanic crust. The Eocene granites are mainly high-Kcalc-alkaline series as well as shoshonitic series and are metaluminous to peraluminous, which indicate that the magma was formed in the collisional setting of India-Eurasia plates and mixed with crustal materials at different degrees during the magma underplating processes.
  • [1]
    莫宣学,董国臣,赵志丹.等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报, 2005,11(3):281-290.
    [2]
    潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J]. 岩石学报,2006,22(3):521-533.
    [3]
    莫宣学,潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束[J]. 地学前缘,2006,13(6):43-51.
    [4]
    江万, 莫宣学, 赵崇贺,等. 青藏高原冈底斯花岗岩带花岗闪长岩及其中岩石包体的岩石学特征[J]. 沉积与特提斯地质, 1998,2:94-99.
    [5]
    董国臣,莫宣学,赵志丹,等.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据[J].岩石学报,2006,22(4):835-844.
    [6]
    耿全如,潘桂棠,郑来林,等.论雅鲁藏布大峡谷地区冈底斯岛弧花岗岩带[J].沉积与特提斯地质,2001, 21(2):16~22.
    [7]
    莫宣学,赵志丹,邓晋福,等.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003,10(3):135-148.
    [8]
    赵志丹,莫宣学,罗照华,等.印度-亚洲俯冲带结果:岩浆作用证据[J].地学前缘,2003,10(3):149-157.
    [9]
    李光明,芮宗瑶.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学,2004,22(2):165-170.
    [10]
    侯增谦,孟祥金,曲晓明,等.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J]. 矿床地质,2005,24(2):108-121.
    [11]
    赵志丹,莫宣学, Sebastien N.,等.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J].岩石学报, 2006, 22(4):787-794.
    [12]
    侯增谦,莫宣学,高永丰,等.印度大陆与亚洲大陆早期碰撞过程与动力学模型——来自西藏冈底斯新生代火成岩证据[J]. 地质学报,2006,80(9):1233-1248.
    [13]
    侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,2006,25(4):337-358.
    [14]
    和钟铧,杨德明,王天武.冈底斯带谷露区中新世花岗岩地球化学特征及构造环境[J].吉林大学学报(地球科学版), 2007,37(1):31-37.
    [15]
    莫宣学,赵志丹,周肃.印度-亚洲大陆碰撞的时限[J]. 地质通报,2007,26(10):1240-1244.
    [16]
    耿全如,郑来林,董翰,等.冈底斯带东段鲁朗-墨脱地区中新世花岗岩的地球化学、年代学及成因[J].地质通报, 2008,27(1):69-82.
    [17]
    朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].地质通报,2008,27(9):1535-1550.
    [18]
    纪伟强,吴福元,等.西藏南部冈底斯岩基花岗岩时代与岩石成因[J].地球科学. 2009, 39(7):849~871.
    [19]
    孟元库,许志琴,陈希节,等.藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义[J].大地构造与成矿学,2015,39(5):933-948.
    [20]
    孟元库.藏南冈底斯中段南缘构造演化[D].北京:中国地质科学院. 2016.
    [21]
    杨震,姜华,杨明国,等.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义[J].地球科学,2017,42(3):339-356.
    [22]
    王健,魏启荣,次琼,等.西藏鸡公村钼矿区中酸性岩体的时代、岩石地球化学特征及构造背景[J].地学前缘,2018,25(6):152-164.
    [23]
    吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004,49(15):1554-1569.
    [24]
    CHUNG S L,CHU M F,ZHANG Y. et al. Tibetan tecton-ic evolution inferred from spatial and temporal variations inpospt-collisional magmatism[J]. Earth-Science Reviews,2005,68(3):173-196.
    [25]
    MO XX,HOU Z Q,NIU Y L. et al. Mantle contributions to crustal thickening during continental collision:evidence from Cenozoic igneous rocks in southern Tibet[J].Lithos,2007,96(1):225-242.
    [26]
    陈德潜,陈刚.实用稀土元素地球化学[M].北京:冶金工业出版社,1990.
    [27]
    NIU Y.ChemInfrom abstract:Earth processes cause Zr-Hf and Nb-Ta fraction,but why and how[J]? Chem-inform,2012,43(29):3587-3591.
    [28]
    JI W Q,WU F Y,CHUNG S L,et al. Zircon U-Pb geo-chronology and Hf isotopic constraints on petrogenesis of the Gangdese batholiths,southern Tibet[J]. Chemical Geology,2009,262(3/4):229-245.
    [29]
    Gradstein F M,Ogg J G, Smith A G. A geologic time scale[M]. Cambridg:Cambridge University Press,2004.384.
  • Related Articles

    [1]LU Lu, QIAN Cheng, ZHAO Zhen, WU Zhenhan. Neoproterozoic-Jurassic Tectonic-Magmatic Events of the Metamorphic Basement in the Nyainrong Microcontinent of Tibet: Implications from Zircon LA-ICP-MS Geochronology[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(4): 734-746. DOI: 10.19826/j.cnki.1009-3850.2021.08010
    [2]LENG Qiufeng, LI Wenchang, DAI Chenglong, TANG Pan, CHEN Ming. Sulfur and lead isotope composition tracing for the ore-forming material source of Nachatang Pb-Zn deposit in Tibet[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(1): 168-179. DOI: 10.19826/j.cnki.1009-3850.2022.01014
    [3]XIE Chao-ming, LI Cai, ZHAI Qing-guo, LIU Yi-ming, WANG Ming, HU Pei-yuan, FAN Jian-jun. The Early Paleozoic magmatism in Qiangtang, northern Tibet and its geological significance[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(2): 340-350. DOI: 10.19826/j.cnki.1009-3850.2021.01004
    [4]Lin Yengpeng, Ci Dan, Zhao Hongfei, Yang Ou, Li Li, Ba Ci. Zircon U-Pb age, geochemistry and geological significances of the biotite monzogranite in Lhasa rock mass, Tibet[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(4): 56-70. DOI: 10.19826/j.cnki.1009-3850.2020.06007
    [5]XIE Chaoming, LI Cai, LI Guangming, WANG Bin, DONG Yuchao, HAO Yujie, . The research progress and problem of the Sumdo Paleo-Tethys Ocean, Tibet[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(2): 1-13. DOI: 10.19826/j.cnki.1009-3850.(2020)02-0001-13
    [6]XU Yun-fei, CONG Feng, LIU Jun-ping, SUN Bai-dong, HUANG Xiao-ming. U-Pb dating of the detrital zircons from the Lancang Group Complex in western Yunnan and its geological significance[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(2): 103-112.
    [7]LIU Jun-ping, TIAN Su-mei, CONG Feng, SUN Bai-dong, HUANG Xiao-ming, XU Yun-fei. The Shale granites from the southern part of the Lancangjiang tectonic belt,western Yunnan: Zircon U-Pb age,geochemistry and geological implications[J]. Sedimentary Geology and Tethyan Geology, 2017, 37(4): 29-40.
    [8]GAO Jian-hua, WU Zhen-bo, FAN Wen-yu, WANG Hong. Highly fractionated I-type granites in the northwestern part of Truong Son metallogenic belt, Laos-Vietnam: LA-ICP-MS zircon U-Pb age and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 2016, 36(4): 85-94.
    [9]PENG Jian-hua, ZHAO Xi-liang, HE Jun, HUANG Shao-chun, GONG Chen. The discovery and significance of the Indosinian diorites in western Gangdise, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(1): 102-107.
    [10]LIU Wei-liang, XIA Bin, ZHANG Yu-quan, ZHONG Yun, LIU Hong-fei, CAI Zhou-rong, HU Yang. Zircon U-Pb dating and geological implications for the granodiorites from the Dazhuka region in Xizang[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(3): 82-86.

Catalog

    Article views (316) PDF downloads (176) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return