• The Core Journal of China
  • Included in Chinese Scientific and Technical Papers and Citations Database
  • Included in Chinese Science Citation Database (CSCD)
  • Included in Chemical Abstracts (CA)
  • Included in Scopus
Advanced Search
WAN P Y,CHENG W B,CAI J M,et al.,2025. The depositional environment and manganese mineralization mechanism of the ore-bearing rock series from the No. Ⅲ ore body of the early Cambrian Maojiashan manganese deposit, Longmenshan tectonic belt[J]. Sedimentary Geology and Tethyan Geology,45(1):134−151. DOI: 10.19826/j.cnki.1009-3850.2024.12010
Citation: WAN P Y,CHENG W B,CAI J M,et al.,2025. The depositional environment and manganese mineralization mechanism of the ore-bearing rock series from the No. Ⅲ ore body of the early Cambrian Maojiashan manganese deposit, Longmenshan tectonic belt[J]. Sedimentary Geology and Tethyan Geology,45(1):134−151. DOI: 10.19826/j.cnki.1009-3850.2024.12010

The depositional environment and manganese mineralization mechanism of the ore-bearing rock series from the No. Ⅲ ore body of the early Cambrian Maojiashan manganese deposit, Longmenshan tectonic belt

More Information
  • Received Date: October 12, 2024
  • Revised Date: December 11, 2024
  • Accepted Date: December 29, 2024
  • Addressing the scientific question of the unclear mechanism of manganese enrichment and precipitation in the early Cambrian manganese deposits of the Longmenshan tectonic belt, this paper focuses on the No. Ⅲ ore body of the Maojiashan manganese deposit in this belt as the research object. Based on detailed field geological surveys and thin-section identification, a systematic total organic carbon (TOC) and elemental geochemical test was conducted to preliminarily explore the source of manganese, depositional environment, and enrichment mechanism. The study shows: (1) The ore-bearing rock series from the No. Ⅲ ore body of the Maojiashan manganese deposit belongs to the fifth member of the lower Cambrian Qiujiahe Formation, primarily composed of manganese ore layers (No. Ⅲ manganese ore body), pyrite layers, manganese-bearing siliceous dolostone, carbonaceous mudstone, siliceous rock, and dolostone. The manganese ore layer is composed of centimeter- to millimeter-scale multi-cycle manganese-rich sulfide layers and manganese-rich carbonate layers. The main ore minerals are alabandite and kutnahorite, and the main gangue minerals are pyrite framboids and quartz, with a small amount of organic matter. (2) The CIA value of the ore-bearing rock series mainly ranges from 65 to 85, indicating moderate continental weathering conditions, favorable for the migration of terrigenous manganese. However, there is a negative correlation between Al2O3 and MnO, suggesting that continental weathering is likely not the main source of manganese. In the (Cu+Co+Ni)×10–Fe–Mn, (Zr+Y+Ce)×100–(Cu+Ni)×15–(Fe+Mn)/4, Ce/Ce* vs. (Y/Ho)PAAS, Ce/Ce* vs. Nd, and Fe/Ti vs. Al/(Al+Fe+Mn) discriminant diagrams, the data pertaining to rocks and ores of the ore-bearing rock series are mainly plotted on the hydrothermal origin area or the aqueous-hydrothermal mixed area, indicating that manganese is likely derived from submarine hydrothermal input. (3) The size of pyrite framboids, as well as redox indicators such as the EFMo/EFU ratio, V/Cr ratio, and V/(V+Ni) ratio, indicate that the ore-bearing rock series formed in a bottom water environment with fluctuating suboxic-anoxic-sulfidic conditions; paleoceanic productivity indicators P and Cd indicate high paleoproductivity; TOC vs. Mo and Mo vs. Cd diagrams show that the ore-bearing rock series mainly formed in a weakly restricted upwelling environment. (4) The mechanism of manganese enrichment and precipitation is likely controlled by microbial-induced mineralization and bacterial sulfate reduction (BSR).

  • [1]
    Algeo T J,Li C,2020. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta,287:8 − 26. DOI: 10.1016/j.gca.2020.01.055
    [2]
    Algeo T J,Liu J,2020. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology,540:119549. DOI: 10.1016/j.chemgeo.2020.119549
    [3]
    Algeo T J,Lyons T W,2006. Mo-total organic carbon covariation in modern anoxic marine environments:Implication for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography,21:1 − 23.
    [4]
    Algeo T J,Lyons T W,Blakey R C,et al.,2007. Hydrographic conditions of the Devono-Carboniferous North American Seaway inferred from sedimentary Mo-TOC relationships[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,256:204 − 230.
    [5]
    Algeo T J,Rowe H,2012. Paleoceanographic applications of trace-metal concentration data[J]. Chemical Geology,324:6 − 18.
    [6]
    Algeo T J,Tribovillard N,2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology,268(3):211 − 225.
    [7]
    白新会,王挽琼,袁明强,等,2022. 四川省平武县箭竹垭锰矿地质特征及矿床成因探讨[J]. 中国锰业,40(4):18 − 22.

    Bai X H,Wang W Q,Yuan M Q,et al.,2022. Geological characteristics and genesis of Jianzhuya manganese deposit in Pingwu,Sichuan,China[J]. Manganese Industry,40(4):18 − 22. (in Chinese with English abstract).
    [8]
    包万铖,夏国清,路畅,等,2023. 西藏伦坡拉盆地牛堡组二段晚始新世−早渐新世地球化学特征与古气候意义[J]. 沉积与特提斯地质,43(3):580 − 591.

    Bao W C,Xia G Q,Lu C,et al.,2023. Late Eocene to early Oligocene geochemical characteristics and paleoclimatic significance of the second member of Niubao Formation in the Lunpola Basin,Tibet[J]. Sedimentary Geology and Tethyan Geology,43(3):580 − 591 (in Chinese with English abstract).
    [9]
    Bau M,Dulski P,1996. Distribution of yttrium and rare earth elements in the Penge and Kuruman iron formations,Transvaal supergroup South Africa[J]. Precambrian Research,79:37 − 55. DOI: 10.1016/0301-9268(95)00087-9
    [10]
    Bau M,Schmidt K,Koschinsky A,et al.,2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology,381:1 − 9. DOI: 10.1016/j.chemgeo.2014.05.004
    [11]
    Bennett W W,Canfield D E,2020. Redox-sensitive trace metals as paleoredox proxies:A review and analysis of data from modern sediments[J]. Earth-Science Reviews,204:103175. DOI: 10.1016/j.earscirev.2020.103175
    [12]
    Bolton B R,Frakes L A,1985. Geology and genesis of manganese oolite,Chiatura,Georgia,U.S.S.R.[J]. Geological Society of America Bulletin,96:1398 − 1406. DOI: 10.1130/0016-7606(1985)96<1398:GAGOMO>2.0.CO;2
    [13]
    Bonatti E,Kraemer T,Rydell H,1972. Classification and genesis of submarine iron-manganese deposits [C]//Horn D R (ed),Ferromanganese deposits on the ocean floor. Natl. Sci. Found.,Washington:149 − 165.
    [14]
    Bond D P,Wignall P B,2010. Pyrite framboid study of marine Permian–Triassic boundary sections:A complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin,122(7 − 8):1265 − 1279.
    [15]
    Boström K,1983. Genesis of Ferromanganese Deposits-Diagnostic Criteria for Recent and Old Deposits [C]//Rona P A.,Eds.,Hydrothermal processes at seafloor spreading centers. Springer,Berlin:473 − 489.
    [16]
    Bruland K W,1980. Oceanographic distributions of cadmium,zinc,nickel,and copper in the North Pacific[J]. Earth and Planetary Science Letters,47(2):176 − 198. DOI: 10.1016/0012-821X(80)90035-7
    [17]
    Brumsack H J,2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,232(2-4):344 − 361.
    [18]
    Calvert S E,Pedersen T F,1993. Geochemistry of recent oxic and anoxic sediments: implications for the geological record[J]. Marine Geology,113:67 − 88.
    [19]
    Chen F G,Pufahl P K,Wang Q F,et al.,2022. A new model for the genesis of carboniferous Mn ores,Longtou deposit,South China block[J]. Economic Geology,117(1):107 − 125. DOI: 10.5382/econgeo.4855
    [20]
    Chen F G,Wang Q F,Pufahl P K,et al.,2023. Carbonate-hosted manganese deposits and ocean anoxia[J]. Earth and Planetary Science Letters,622:118385. DOI: 10.1016/j.jpgl.2023.118385
    [21]
    程文斌,顾雪祥,胡修棉,等,2008. 现代大洋红色粘土与白垩纪大洋红层元素地球化学对比[J]. 地质学报,82(1):37 − 47. DOI: 10.3321/j.issn:0001-5717.2008.01.005

    Cheng W B,Gu X X,Hu X M,et al.,2008. Comparative element geochemistry of recent oceanic red clay and Cretaceous oceanic red bed[J]. Acta Geologica Sinica,82(1):37 − 47 (in Chinese with English abstract). DOI: 10.3321/j.issn:0001-5717.2008.01.005
    [22]
    Conway T M,John S G,2015. Biogeochemical cycling of cadmium isotopes along a highresolution section through the North Atlantic Ocean [J]. Geochimica et Cosmochimica Acta,148:269 − 283.
    [23]
    De Baar H J W,Schijf J,Byrne R H,1991. Solution chemistry of the rare-earth elements in seawater[J]. Eur. J. Solid State Inorg. Chem.,28:357 − 373.
    [24]
    Dong Z G,Peng Z D,Robbins L J,et al.,2023. Episodic ventilation of euxinic bottom waters triggers the formation of black shale-hosted Mn carbonate deposits[J]. Geochimica et Cosmochimica Acta,341:132 − 149.
    [25]
    Föllmi K B,1996. The phosphorus cycle,phosphogenesis and marine phosphate-rich deposits[J]. Earth Science Reviews,40:55 − 124. DOI: 10.1016/0012-8252(95)00049-6
    [26]
    Frakes L A,Bolton B R,1984. Origin of manganese giants:Sea level change and anoxic-oxic history [J]. Geology,12(2):83 − 86.
    [27]
    Gao Z F,Zhu X K,Wang D,et al.,2021. Insights into hydrothermal controls and processes leading to the formation of the late Ediacaran gaoyan stratiform manganese-carbonate deposit,southwest China[J]. Ore Geology Reviews,139:104524. DOI: 10.1016/j.oregeorev.2021.104524
    [28]
    葛祥英,牟传龙,余谦,等,2021. 四川盆地东部五峰组—龙马溪组黑色页岩有机质富集规律探讨[J]. 沉积与特提斯地质,41(3):418 − 435.

    Ge X Y,Mou C L,Yu Q,et al.,2021. A study on the enrichment of organic materials in black shales of the Wufeng to Longmaxi Formations in eastern Sichuan Basin [J]. Sedimentary Geology and Tethyan Geology,41(3):418 − 435 (in Chinese with English abstract).
    [29]
    Han T,Peng Y B,Bao H M,2022. Sulfate-limited euxinic seawater facilitated Paleozoic massively bedded barite deposition[J]. Earth and Planetary Science Letters,582:117419. DOI: 10.1016/j.jpgl.2022.117419
    [30]
    Hatch J R,Leventhal J S,1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,USA[J]. Chem. Geol.,99(1 − 3):65 − 82. DOI: 10.1016/0009-2541(92)90031-Y
    [31]
    Hein J R,Fan D L,Ye J,et al.,1999. Composition and origin of early Cambrian Tiantaishan phosphorite–Mn carbonate ores,Shaanxi province,China[J]. Ore Geology Reviews,15(1 − 3):95 − 134. DOI: 10.1016/S0169-1368(99)00017-7
    [32]
    Herndon E M,Havig J R,Singer D M,et al.,2018. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake[J]. Geochimica et Cosmochimica Acta,231:50 − 63. DOI: 10.1016/j.gca.2018.04.013
    [33]
    Jarvis I,Burnett W C,Nathan Y,et al.,1994. Phosphorite geochemistry:State of the art and environmental concerns[J]. Eclogae Geologicae Helvetiae,87(3):643 − 700.
    [34]
    Polgári M,Okita P M,Hein J R,1991. Stable isotope evidence for the origin of the Úrkút manganese ore deposit,Hungary[J]. Journal of Sedimentary Research,61(3):384 − 393.
    [35]
    纪冬平,王朋,高政伟,等,2022. 陕西宁强县中坝锰矿床地球化学特征及成矿模式[J]. 矿床地质,41(3):469 − 488.

    Ji D P,Wang P,Gao Z W,et al.,2022. Geochemical characteristics and metallogenic model of Zhongba manganese deposit in Ningqiang County,Shaanxi,China[J]. Mineral Deposits,41(3):469 − 488 (in Chinese with English abstract).
    [36]
    纪冬平,王朋,张凯,等,2021. 陕西宁强县中坝地区发现沉积型锰(钴)矿[J]. 矿产与地质,35(2):365 − 369.

    Ji D P,Wang P,Zhang K,et al.,2021. Discovery of the sedimentary Mn (Co) deposit in Zhongba area,Ningqiang County of Shaanxi[J]. Mineral Resources and Geology,35(2):365 − 369 (in Chinese with English abstract).
    [37]
    Johnson J E,Webb S M,Ma C,et al.,2016. Manganese mineralogy and diagenesis in the sedimentary rock record [J]. Geochimica et Cosmochimica Acta,173:210 − 231.
    [38]
    Jones B,Manning D A C,1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chem. Geol.,111:111 − 129.
    [39]
    Josso P,Pelleter E,Pourret O,et al.,2017. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews,87:3 − 15. DOI: 10.1016/j.oregeorev.2016.09.003
    [40]
    李贤凯,罗润,2018. 四川平武杏子树矿产地质特征及成矿模式浅析[J]. 世界有色金属(1):131 − 132.

    Li X K,Luo R,2018. Analysis of mineral geological characteristics and metallogenic model of apricot tree in Pingwu,Sichuan[J]. World Nonferrous Metals(1):131 − 132. (in Chinese with English abstract).
    [41]
    Li Y H,Schoonmaker J E,2003. Chemical composition and mineralogy of marine sediments [A]// In:Rudnick R L,eds. Treatise on geochemistry,volume 7,sediments,diagenesis,and sedimentary rocks [C]. New York:Elsevier Sciences:1 − 35.
    [42]
    李佐臣,2009. 扬子地块西北缘后龙门山造山带(北段)物质组成、构造特征及其形成演化[D]. 西安:长安大学.

    Li Z C,2009. Composition,structural characteristics and evolution of Back-Longmenshan orogen (north section) in the northwest margin of Yangtze Block [D]. Xi'an:Chang'an University (in Chinese with English abstract).
    [43]
    李佐臣,裴先治,李瑞保,等,2013. 扬子地块西北缘刘家坪地区大滩花岗岩体年代学、地球化学及其构造环境[J]. 地质论评,59(5):869 − 884.

    Li Z C,Pei X Z,Li R B,et al.,2013. Geochronological and geochemical study on Datan granite in Liujiaping area,northwest Yangtze block and its tectonic sitting[J]. Geological Review,59(5):869 − 884 (in Chinese with English abstract).
    [44]
    Liu H,Sun L,Liu L,et al.,2024. Neoarchean subduction to back-arc extension in the North China Craton:Insights from the Dengfeng basic rock[J]. Solid Earth Sciences,9(3):100192. DOI: 10.1016/j.sesci.2024.100192
    [45]
    罗绍强,张懿,刘增达,等,2024. 扬子西缘“平溪式”锰矿锰碳酸盐岩沉积成因[J/OL]. 地质通报. http://kns.cnki.net/kcms/detail/11.4648.p.20240508.1812.006.html.

    Luo S Q,Zhang Y,Liu Z D,et al. ,2024. Sedimentary genesis of Mn-carbonates of the “Pingxi type” Mn deposits in the western Yangtze margin [J/OL]. Geological Bulletin of China. http://kns. cnki.net/kcms/detail/11.4648.p.20240508.1812.006.html (in Chinese with English abstract).
    [46]
    Lyons T W,Reinhard C T,Planavsky N J,2014. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature,506(7488):307 − 315. DOI: 10.1038/nature13068
    [47]
    Marchig V,Gundlach H,Möller P,et al.,1982. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments[J]. Marine Geology,50(3):241 − 256.
    [48]
    Maynard J B,2010. The chemistry of manganese ores through time:A signal of increasing diversity of Earth-surface environments[J]. Economic Geology,105:535 − 552. DOI: 10.2113/gsecongeo.105.3.535
    [49]
    Maynard J B,2014. Manganiferous sediments,rocks,and ores [A]// In:Holland H,and Turekian K eds. Treatise on geochemistry [M].Volume 9,New York:Elsevier Sciences:327 − 349.
    [50]
    McLennan S M,1989. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes [J].Reviews in Mineralogy and Geochemistry,21:169 − 200.
    [51]
    Melaku A A,Getaneh W,Atnafu B,2022. Genesis of the Enkafela Mn deposit:a record of submarine hydrothermal activity in the Afar Depression,Northeast Ethiopia[J]. Applied Earth Science,131(1):2 − 14. DOI: 10.1080/25726838.2022.2035640
    [52]
    Morford J L,Emerson S,1999. The geochemistry of redox sensitive trace metals in sediments[J]. Geochim. Cosmochim. Acta,63:1735 − 1750. DOI: 10.1016/S0016-7037(99)00126-X
    [53]
    Nesbitt H W,Young G M,1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,299:715 − 717. DOI: 10.1038/299715a0
    [54]
    Pagès A,Barnes S,Schmid S,et al.,2019. Micron-scale distribution of metals in Cambrian metalliferous shales,South China:Insights into local biologically driven redox disequilibrium[J]. Chemical Geology,528:119283. DOI: 10.1016/j.chemgeo.2019.119283
    [55]
    裴先治,李佐臣,丁仨平,等,2009. 扬子地块西北缘轿子顶新元古代过铝质花岗岩:锆石SHRIMP U-Pb年龄和岩石地球化学及其构造意义[J]. 地学前缘,16(3):231 − 249.

    Pei X Z,Li Z C,Ding S P,et al. 2009. Neoproterozoic Jiaoziding peraluminous granite in the northwest margin of Yangtze Block:Zircon SHRIMP U-Pb age and geochemistry,and their tectonic significance[J]. Earth Science Frontiers,16(3):231 − 249 (in Chinese with English abstract).
    [56]
    Piper D Z,Perkins R B,2004. A modern vs. Permian black shale—the hydrography,primary productivity,and water-column chemistry of deposition[J]. Chemical Geology,206:177 − 197. DOI: 10.1016/j.chemgeo.2003.12.006
    [57]
    Piper D Z,Calvert S E,2009. A marine biogeochemical perspective on black shale deposition[J]. Earth-Science Reviews,95:63 − 96. DOI: 10.1016/j.earscirev.2009.03.001
    [58]
    Polgári M,Hein J R,Vigh T,et al.,2012. Microbial processes and the origin of the Úrkút manganese deposit,Hungary[J]. Ore geology Reviews,47:87 − 109. DOI: 10.1016/j.oregeorev.2011.10.001
    [59]
    Rollinson H R,Pease V,2021. Using geochemical data:To understand geological processes [M]. Cambridge University Press.
    [60]
    Schoepfer S D,Shen J,Wei H,et al.,2015. Total organic carbon,organic phosphorus,and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews,149:23 − 52. DOI: 10.1016/j.earscirev.2014.08.017
    [61]
    Stolper D A,Keller C B,2018. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts[J]. Nature,2018,553(7688):323 − 327.
    [62]
    Su C X,Wang M,Luo D,et al.,2024. Petrological and geochemical insights into the magma plumbing system of the Daliuchong dacite eruption,Tengchong Volcanic Field,SW China[J]. Frontiers in Earth Science,12:1376492. DOI: 10.3389/feart.2024.1376492
    [63]
    Sweere T,van den Boorn S,Dickson A J,et al.,2016. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn,Co,Mo and Cd concentrations[J]. Chemical Geology,441:235 − 245. DOI: 10.1016/j.chemgeo.2016.08.028
    [64]
    Tribovillard N,Algeo T J,Baudin F,et al.,2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation Applications to Mesozoic paleoceanography[J]. Chemical Geology,324:46 − 58.
    [65]
    Tribovillard N,Algeo T J,Lyons T,et al.,2006. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chem. Geol.,232(1):12 − 32.
    [66]
    Turgeon S,Brumsack H J,2006. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria–Marche Basin of central Italy[J]. Chemical Geology,234(3 − 4):321 − 339. DOI: 10.1016/j.chemgeo.2006.05.008
    [67]
    Tyrrell T,1999. The relative influence of nitrogen and phosphorus on oceanic primary production[J]. Nature,400:525 − 529. DOI: 10.1038/22941
    [68]
    王畅,程文斌,张玙,等,2024. 川西南雷波小沟早寒武世磷矿床磷酸盐富集沉降机制探讨[J]. 地质论评,70(2):563 − 576.

    Wang C,Cheng W B,Zhang Y,et al.,2024. Discussion on the enrichment and sedimentation mechanisms of phosphates in the Early Cambrian Xiaogou phosphate deposit in Leibo,southwestern Sichuan[J]. Geological Review,70(2):563 − 576 (in Chinese with English abstract).
    [69]
    Wang P,Du Y S,Yu W C,et al.,2020. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history[J]. Earth-Science Reviews,201:103032. DOI: 10.1016/j.earscirev.2019.103032
    [70]
    Wei G Y,Ling H F,Shields G A,et al.,2021. Revisiting stepwise ocean oxygenation with authigenic barium enrichments in marine mudrocks[J]. Geology,49(9):1059 − 1063. DOI: 10.1130/G48825.1
    [71]
    卫炜,隋佩珊,陈婷婷,等,2024. 新元古代氧化事件驱动海洋Ba循环变化[J]. 高校地质学报,30(3):288 − 296.

    Wei W,Sui P S,Chen T T,et al.,2024. Changes in oceanic Ba cycle driven by the Neoproterozoic Oxygenation Event[J]. Geological Journal of China Universities,30(3):288 − 296 (in Chinese with English abstract).
    [72]
    Wittkop C,Swanner E D,Grengs A,et al.,2020. Evaluating a primary carbonate pathway for manganese enrichments in reducing environments[J]. Earth and Planetary Science Letters,538:116201. DOI: 10.1016/j.jpgl.2020.116201
    [73]
    Wood R,Liu A G,Bowyer F,et al.,2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion[J]. Nature Ecology & Evolution ,3(4):528 − 538.
    [74]
    Wu C Q,Zhang Z W,Xiao J F,et al.,2016. Nanhuan manganese deposits within restricted basins of the southeastern Yangtze Platform,China:Constraints from geological and geochemical evidence[J]. Ore Geology Reviews,75:76 − 99. DOI: 10.1016/j.oregeorev.2015.12.003
    [75]
    Xin H,Jiang S Y,Yang J H,et al.,2015. Rare earth element and Sr-Nd isotope geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Zhangcunping section from western Hubei Province,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,440:712 − 724.
    [76]
    许骏,周科宇,熊宇轩,等,2022. 四川省青川县马公锰矿地质特征及找矿预测[J]. 地质找矿论丛,37(1):38 − 43.

    Xu J,Zhou K Y,Xiong Y X,et al.,2022. Geological characteristics and ore prediction of Magong Mn deposit in Qingchuan county,Sichuan province[J]. Contributions to Geology and Mineral Resources Research,37(1):38 − 43 (in Chinese with English abstract).
    [77]
    Xu L G,Lehmann B,Mao J W,et al.,2016. Strontium,sulfur,carbon,and oxygen isotope geochemistry of the Early Cambrian strata-bound barite and witherite deposits of the Qinling-Daba region,northern margin of the Yangtze Craton,China[J]. Economic Geology,111(3):695 − 718. DOI: 10.2113/econgeo.111.3.695
    [78]
    Yang C,Li X H,Li Z X,et al.,2020. Provenance evolution of age-calibrated strata reveals when and how South China Block collided with Gondwana[J]. Geophysical Research Letters,47(19):e2020GL090282. DOI: 10.1029/2020GL090282
    [79]
    Yang H Y,Xiao J F,Xia Y,et al.,2022. Diagenesis of Ediacaran − early Cambrian phosphorite: Comparisons with recent phosphate sediments based on LA-ICP-MS and EMPA[J]. Ore Geology Reviews,144:104813. DOI: 10.1016/j.oregeorev.2022.104813
    [80]
    杨绍许,赵祥庭,1996. 天台山磷质岩系锰矿的成因及磷锰离析成矿的规律[J]. 中国锰业,14(3):9 − 13+23.

    Yang S X,Zhao X T,1996. Genesis of manganese deposit in Tiantaishan phosphatic rock formation and principle of segregation forming of phosphor and manganese minerals [J]. Manganese Industry,14(3):9 − 13+23 (in Chinese with English abstract).
    [81]
    杨先光, 李仕荣, 杨永鹏, 等, 2016. 四川省锰矿成矿规律及资源评价[M]. 北京: 科学出版社.

    Yang X G,Li S R,Yang Y P,et al.,2016. Metallogenic regularity and resource evaluation of manganese deposits in Sichuan Province [M]. Beijing:China Science Publishing(in Chinese).
    [82]
    Yao W H,Li Z X,Li W X,et al.,2014. From Rodinia to Gondwanaland:A tale of detrital zircon provenance analyses from the southern Nanhua basin,South China[J]. American Journal of Science,14(1):278 − 313.
    [83]
    叶连俊,1963. 外生矿床陆源汲取成矿论[J]. 地质科学(2):67 − 87.

    Ye L J,1963. Metallogenic theory of the exogenous deposits terrigenous draw [J]. Scientia Geologica Sinica(2):67 − 87 (in Chinese with English abstract).
    [84]
    叶连俊, 1963. 外生矿床陆源汲取成矿论[J]. 地质科学(2): 67 − 87.

    Yu W C,Algeo T J,Du Y S,et al.,2016. Genesis of Cryogenian Datangpo manganese deposit:Hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,459:321 − 337.
    [85]
    Yu W C,Polgári M,Gyollai I,et al.,2019. Microbial metallogenesis of Cryogenian manganese ore deposits in South China[J]. Precambrian Research,322:122 − 135.
    [86]
    Zeng L K,Wu R S,Luo D X,et al.,1992. Paleogeography of Cambrian rock facies and sedimentary hosted mineral deposits in Sichuan Province [M]. Chengdu:Sichuan Publishing House of Science and Technology(in Chinese). DOI: 10.1016/j.precamres.2019.01.004
    [87]
    曾良鍷, 吴荣森, 罗代锡, 等, 1992. 四川省寒武纪岩相古地理及沉积层控矿产[M]. 成都: 四川科学技术出版社.

    Zhang B L,Wang C L,Robbins L J,et al.,2020. Petrography and geochemistry of the Carboniferous Ortokarnash manganese deposit in the Western Kunlun Mountains,Xinjiang Province,China:Implications for the depositional environment and the origin of mineralization[J]. Economic Geology,115(7):1559 − 1588.
    [88]
    Zhang B,Cao J,Hu K,et al.,2022. Microbially-mediated Mn redox cycling and Mn carbonate precipitation in the Marinoan glacial aftermath,South China[J]. Global and Planetary Change,217:103950.
    [89]
    Zhang B,Cao J,Liao Z,et al.,2021b. Dynamic biogeochemical cycling and mineralization of manganese of hydrothermal origin after the Marinoan glaciation[J]. Chemical Geology,584:120502. DOI: 10.5382/econgeo.4729
    [90]
    张律,颜玲,2015. 张家山锰矿地质特征及找矿标志[J]. 四川地质学报,35(2):201 − 204. DOI: 10.1016/j.gloplacha.2022.103950

    Zhang L,Yan L,2015. Geological features and prospecting criteria for the Zhangjiashan Mn deposit[J]. Acta Geologica Sichuan,35(2):201 − 204 (in Chinese with English abstract). DOI: 10.1016/j.gloplacha.2022.103950
    [91]
    Zhang X L,Chang C,Cui L H,et al.,2021a. Ecosystem reconstruction during the Cambrian explosion [J]. Paleontological Research,25(4),305 − 314. DOI: 10.1016/j.chemgeo.2021.120502
    [92]
    张律, 颜玲, 2015. 张家山锰矿地质特征及找矿标志[J]. 四川地质学报, 35(2): 201 − 204. DOI: 10.3969/j.issn.1006-0995.2015.02.010

    Zhang Y N,Wang Z W,Yang X,et al.,2022. Petrological and Ni-Mo isotopic evidence for the genesis of the Ni-and Mo-sulfide extremely enriched early Cambrian black shale from Southwest China[J]. Chemical Geology,598:120812. DOI: 10.3969/j.issn.1006-0995.2015.02.010
    [93]
    钱赵伟,李金旺,李树雷,2022. 陕南天台山磷锰矿地质特征及成因分析[J]. 中国锰业,40(1):27 − 31+36.

    Zhao Q W,Li J W,Li S L,2022. Geological characteristics and genesis analysis of phosphorus-manganese ore in Tiantai Mountain,southern Shanxi[J]. Manganese Industry,40(1):27 − 31+36 (in Chinese with English abstract).
    [94]
    郑辉,2016. 四川观音梁子锰矿床地质特征及找矿意义[J]. 地质找矿论丛,31(3):317 − 324. DOI: 10.1016/j.chemgeo.2022.120812

    Zheng H,2016. Geological characteristics of Guanyinliangzi manganese deposit in Sichuan and significance of its prospecting[J]. Contributions to Geology and Mineral Resources Research,31(3):317 − 324 (in Chinese with English abstract). DOI: 10.1016/j.chemgeo.2022.120812
    [95]
    钱赵伟, 李金旺, 李树雷, 2022. 陕南天台山磷锰矿地质特征及成因分析[J]. 中国锰业, 40(1): 27 − 31+36.

    Zheng M H,et al.,1993. Principles of ore geology [M]. Chengdu:Chengdu University of Science and Technology Press(in Chinese).
    [96]
    杨先光,李仕荣,杨永鹏,等,2016. 四川省锰矿成矿规律及资源评价[M]. 北京:科学出版社. DOI: 10.6053/j.issn.1001-1412.2016.03.001

    Zheng H, 2016. Geological characteristics of Guanyinliangzi manganese deposit in Sichuan and significance of its prospecting[J]. Contributions to Geology and Mineral Resources Research, 31(3): 317 − 324. DOI: 10.6053/j.issn.1001-1412.2016.03.001
    [97]
    曾良鍷,吴荣森,罗代锡,等,1992. 四川省寒武纪岩相古地理及沉积层控矿产[M]. 成都:四川科学技术出版社.
    [98]
    郑明华,等,1993. 矿床地质原理[M]. 成都:成都科技大学出版社.

    Zheng M H, et al., 1993. Principles of ore geology [M]. Chengdu: Chengdu University of Science and Technology Press(in Chinese).
  • Other Related Supplements

Catalog

    Article views (43) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return