Advanced Search
    XIANG Wei, XIANG Shuyuan, LI Weibo, ZENG Xianchun. The n-alkane distribution and palaeoenvironmental changes during the late Pleistocene in the Kunteyi area, Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(2): 69-77.
    Citation: XIANG Wei, XIANG Shuyuan, LI Weibo, ZENG Xianchun. The n-alkane distribution and palaeoenvironmental changes during the late Pleistocene in the Kunteyi area, Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(2): 69-77.

    The n-alkane distribution and palaeoenvironmental changes during the late Pleistocene in the Kunteyi area, Qaidam Basin, Qinghai

    More Information
    • Received Date: March 04, 2019
    • Revised Date: April 11, 2019
    • Published Date: June 29, 2019
    • In order to explore the palaeoenvironmental changes during the late Pleistocene in the Qaidam Basin, Qinghai and provide the basic data for the study of the effects of the Qinghai-Xizang Plateau uplift on the palaeoclimatic changes, the present paper gives a detailed description of the n-alkane distribution and ASM 14C dating for the sediments from the ZK-1404 well in the Kunteyi area, Qaidam Basin. The n-alkanes in most of the samples from the ZK-1404 well are characterized by high carbon numbers such as nC27, nC29 and nC31, suggesting the odd-carbon advantage. Several samples contain higher relative abundance short-chain n-alkanes (carbon numbers less than nC21), with nC17 and nC20 as the main peaks and without the odd-carbon advantage. Judged from the n-alkane distribution, ASM 14C dating, regional geology and palaeoenvironmental studies, the late Pleistocene (33600a to 26370a B.P.) palaeoclimatic conditions in the Kunteyi area, Qaidam Basin display the alterative changes of warm, cool and dry palaeoclimatic conditions, and warm, cool, dry and humid palaeoclimatic conditions, which are distinctly different from the modern continental arid desert climatic conditions.
    • [1]
      Eglinton T I, Eglinton G. Molecular Proxies for Paleoclimatology[J]. Earth & Planetary Science Letters, 2008,275(1):1-16.
      [2]
      崔景伟, 黄俊华, 谢树成. 湖北清江现代植物叶片正构烷烃和烯烃的季节性变化[J]. 科学通报,2008,53(11):1318-1323.
      [3]
      王素萍, 贾国东, 赵艳,等.柴达木盆地克鲁克湖全新世气候变化的正构烷烃分子记录[J]. 第四纪研究, 2010,30(6):1097-1104.
      [4]
      蒲阳, 张虎才, 雷国良,等.青藏高原东北部柴达木盆地古湖泊沉积物正构烷烃记录的MIS3晚期气候变化[J]. 中国科学:地球科学, 2010,40(5):624-631.
      [5]
      蒲阳,张虎才,陈光杰,等. 干旱盆地古湖相沉积物生物标志物分布特征及环境意义——以柴达木盆地为例[J]. 中国沙漠,2013,33(4):1019-1026.
      [6]
      金传芳,李世杰,陈炜,等. 青藏高原气候演变的湖相沉积有机地球化学记录——以兹格塘错为例[J]. 矿物岩石地球化学通报, 2016, (4):625-633.
      [7]
      王欢业,刘卫国. 青藏高原微生物甘油二烷基甘油四醚类化合物古气候指标研究进展[J]. 盐湖研究, 2016, (2):75-82.
      [8]
      谢树成,王志远,王红梅,等. 末次间冰期以来黄土高原的草原植被景观:来自分子化石的证据[J]. 中国科学:地球科学, 2002, (1):28-35.
      [9]
      王志远,谢树成,陈发虎. 临夏塬堡黄土地层S1古土壤中的正构烷烃及其古植被意义[J]. 第四纪研究,2004,24(2):231-235.
      [10]
      刘卫国,张普,孙有斌,等. 黄土高原中部7-2Ma期间古植被变化的分子化石证据——以赵家川剖面为例[J]. 第四纪研究, 2008,28(5):806-811.
      [11]
      林晓,卢佳仪,田望学,等.武汉东西湖区第四系钻孔的沉积环境及古气候变化[J].地质科技情报, 2011,30(3):33-40.
      [12]
      谢树成, 梁斌, 郭建秋, 等. 生物标志化合物与相关的全球变化[J].第四纪研究,2003,23(5):521-528.
      [13]
      谢树成, 黄咸雨, 杨欢, 等. 示踪全球环境变化的微生物代用指标[J].第四纪研究,2013,33(1):1-18.
      [14]
      段毅, 郑朝阳, 吴保祥. 若尔盖沼泽环境中植物和沉积单体正构烷烃氢同位素组成特征及其成因关系[J]. 中国科学:地球科学, 2010,40(6):745-750.
      [15]
      段毅, 何金先, 吴保祥,等.咸水湖泊沉积物中正构烷烃及其氢同位素组成与成因[J]. 地球科学-中国地质大学学报, 2011,36(1):53-61.
      [16]
      段毅, 夏嘉, 何金先, 等.茶卡盐湖沉积物和周围地区植物中正构烷烃及其氢同位素组成特征[J]. 地质学报, 2011, 85(12):2084-2092.
      [17]
      张虎才,常凤琴,李斌,等. 柴达木察尔汗湖贝壳堤剖面长链支链烷烃及其古环境意义[J]. 科学通报, 2007, 52(6):707-714.
      [18]
      张虎才,王强,彭金兰,等.柴达木察尔汗盐湖贝壳堤剖面介形类组合及其环境意义[J]. 第四纪研究, 2008,28(1):103-111.
      [19]
      张虎才,张文翔,常凤琴,等. 稀土元素在湖相沉积中的地球化学分异——以柴达木盆地贝壳堤剖面为例[J]. 中国科学:地球科学, 2009,39(8):1160-1168.
      [20]
      潘桂棠,肖庆辉,陆松年,等.中国大地构造单元划分[J].中国地质, 2009,36(1):1-4.
      [21]
      强明瑞, 陈发虎, 张家武,等. 2ka来苏干湖沉积碳酸盐稳定同位素记录的气候变化[J]. 科学通报, 2005,50(13):1385-1393.
      [22]
      Ficken K J, Li B, Swain D L, et al. An n-Alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J].Organic Geochemistry, 2000,31(7-8):745-749.
      [23]
      Dodd R S,Afzalrafii Z. Habitat-related adaptive properties of plantcuticular lipids[J]. Evolution, 2000, 54(4):1438-1444.
      [24]
      Dodd R S, Poveda M M. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus Communis[J]. Biochemical Systematics & Ecology, 2003,31(11):1257-1270.
      [25]
      谢树成, Evershed R P. 泥炭分子化石记录气候变迁和生物演替的信息[J]. 科学通报, 2001,46(10):863-866.
      [26]
      Zhang H F, Wang R J, Xiao W S.Paleoenvironmental implications of Holocene Long-Chain n-Alkanes on the Northern Bering Sea Slope[J]. Acta Oceanologica Sinica, 2017,36(8):137-145.
      [27]
      Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-Ⅱ[J]. Organic Geochemistry,1987,11(6):513-527.
      [28]
      林晓, 朱立平, 汪勇,等. 西藏纳木错湖芯正构烷烃及其反映的8.4ka以来的环境变化[J]. 科学通报, 2008,53(19):2352-2357.
      [29]
      Meyers P A. Applications of organic geochemistry topaleolimnological reconstructions:a summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003,34(2):261-289
      [30]
      Yamada K,Ishiwatari R. Carbon isotopic compositions of long-chain n-alkanes in the Japan Sea sediments:Implications for paleoenvironmental changes over the past 85 Kyr[J]. Organic Geochemistry, 1999,30(5):367-377.
      [31]
      Zhang Z H, Zhao M, Eglinton G, et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr[J].Quaternary Science Reviews,2006,25(5/6):575-594.
      [32]
      杨桂芳, 武法东, 陈正洪,等. 内蒙古磴口河湖相沉积物正构烷烃分布特征及其环境意义.[J]地球科学-中国地质大学学报, 2015, 40(2):327-333.
      [33]
      Poynter J, Eglinton G. Molecular composition of three sediments from Hole 717C:The Bengal Fan[J]. Proceedings of the Ocean Drilling Program Scientific Results. 1990,116:155-161.
      [35]
      Zhang Z H, Zhao M X, Yang X D, et al. A hydrocarbon biomarker record for the last 40 Kyr of plant input to Lake Heqing, Southwestern China[J]. Organic Geochemistry, 2004,35:595-613.
      [36]
      张成艳, 成小英, 董海良,等. 库赛湖沉积物中正构烷烃的分布特征及古环境意义[J]. 地质科技情报, 2015,34(1):72-77.
      [36]
      Zhou W J,Xie S C, Meyers P A, et al. Reconstruction of Late glacial and holocene climate evolution in Southern China from geolipids and pollen in the Dingnan peat sequence[J]. Organic Geochemistry, 2005,36:1272-1284.
      [37]
      Wang Y J,Cheng H,Edwards R L,et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science,2001, 294:2345-2348.
    • Related Articles

      [1]GUO Linnan, LIU Shusheng, NIE Fei, WU Songyang, XU Siwei, SHI Meifeng. Paleo-Tethys tectonic-magmatic evolution and gold-copper metallogenesis in Luang Prabang (Laos)-Loei (Thailand) metallogenic belt[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(2): 228-241. DOI: 10.19826/j.cnki.1009-3850.2022.04012
      [2]WANG Tianrui, HOU Lin, LIN Fangcheng, XIONG Fuhao, GUO Yang, GUO Linnan, XU Siwei, ZENG Xiangting, SHI Meifeng, CONG Feng. Paleo-Tethys tectonic-magmatic evolution and mineralization in the Truong Son metallogenic belt, Laos-Vietnam[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(2): 212-227. DOI: 10.19826/j.cnki.1009-3850.2022.04014
      [3]GUO Linnan, HOU Lin, NIE Fei, LIU Shusheng, Xu Siwei, ZHANG Qiming. Zircon U-Pb dating of quartz-diorite from Luang Prabang tectonic belt in Laos: Implication for eastward subduction of the Paleo-Tethys Ocean[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 68-75. DOI: 10.19826/j.cnki.1009-3850(2020)01-0068-08
      [4]NIE fei, LIU Shusheng, YANG Yongfei, PENG Zhimin, GUO Linnan. Zircon U-Pb dating and its geological implications for the diorites from the Phu Lon skarn-type copper-gold deposit in Thailand[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(4): 71-78.
      [5]GAO Jian-hua, WU Zhen-bo, FAN Wen-yu, WANG Hong. Highly fractionated I-type granites in the northwestern part of Truong Son metallogenic belt, Laos-Vietnam: LA-ICP-MS zircon U-Pb age and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 2016, 36(4): 85-94.
      [6]WU Wen-xian, WANG Yong-hua, WU Zhen-bo, YANG Jian, JIAO Yan-jie, DENG Ke. Analysis and interpretation of magnetic anomalies based on the analytic signal amplitudes[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(1): 108-112.
      [7]WANG Jiang-li, LIN Fang-cheng, ZHU Hua-ping, WANG Hong, SHI Mei-feng. SHRIMP zircon U-Pb dating of the ore-forming monzogranite from the Phalek iron deposit, Vientiane, Laos and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(3): 87-93.
      [8]SHI Mei-feng, LIN Fang-cheng, LIU Chao-ji, LI Xing-zhen, WANG Hong. Classification and metallogenesis of metallogenic belts in Southeast Asia and the neighbouring southwestern part of China[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(2): 103-112.
      [9]WU Jun, ZHU Yan-zhe, YAN Cheng-min, FENG Ming-gang, LI Qiu-ping. The Cretaceous strata in the Vientiane region in Laos[J]. Sedimentary Geology and Tethyan Geology, 2007, 27(4): 63-68.
      [10]LI Zai-hui, WANG Xiong-wu, WANG Xiao-di. Recognition of the A-type granites from the Huangling granite batholith in western Hubei[J]. Sedimentary Geology and Tethyan Geology, 2007, 27(3): 70-77.

    Catalog

      Article views (233) PDF downloads (217) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return