• The Core Journal of China
  • Included in Chinese Scientific and Technical Papers and Citations Database
  • Included in Chinese Science Citation Database (CSCD)
  • Included in Chemical Abstracts (CA)
  • Included in Scopus
Advanced Search
QING Jiawei, XU Shang, PENG Bo, LI Yixiao, GOU Qiyang, WANG Yuxuan, LU Yangbo, ZHANG Aihua, CHENG Xuan, GAO Mengtian, LI Genbiao. Shale reservoirs in the Doushantuo Formation in western Hubei:Porosity and its controlling factors[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(2): 103-111.
Citation: QING Jiawei, XU Shang, PENG Bo, LI Yixiao, GOU Qiyang, WANG Yuxuan, LU Yangbo, ZHANG Aihua, CHENG Xuan, GAO Mengtian, LI Genbiao. Shale reservoirs in the Doushantuo Formation in western Hubei:Porosity and its controlling factors[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(2): 103-111.

Shale reservoirs in the Doushantuo Formation in western Hubei:Porosity and its controlling factors

More Information
  • Received Date: February 25, 2019
  • Revised Date: March 20, 2019
  • Published Date: June 29, 2019
  • The pore structures of shale reservoirs are considered as the basis for the evaluation of shale gas resources. In the light of organic carbon content, asphalt reflectance, X-ray diffraction analysis, field emission scanning electron microscopy (FE-SEM) analysis and low temperatures nitrogen absorption method, the present paper gives a detailed discussion of the compositions, pore structures and controlling factors of the shale reservoirs in the Doushantuo Formation in western Hubei. The Doushantuo Formation is mainly made up of siliceous and calcareous shales. The total organic carbon contents vary from 3.29% to 6%, indicating the I-type kerogen and high maturation-overmaturation stages of the source rocks. The organic pores in the shales from the Doushantuo Formation are less developed, and the inorganic pores have provided the main storage spaces, including intergranular pores, interlayer pores and partial solution openings within the brittle minerals and clay minerals, as well as a small amount of microfractures. On the whole, the pore diameters range between 1.1 nm and 284 nm, and micropores, mesopores and macropores have the volumes of 0.005, 0.023 and 0.006 ml/g, respectively, with an average of 0.034 ml/g. There is no significant correlation between the total organic carbon contents and pore volumes in the shales from the Doushantuo Formation, indicating that the organic pores contribute little to the pore volumes. On the contrary, the contents of siliceous and clay minerals are positively correlated with the pore volumes, indicating that the mineral compositions are the main controlling factors of pore development in the Doushantuo Formation. The shales in the Doushantuo Formation in western Hubei may be considered potentially prospective for shale gas because of good hydrocarbon generation conditions and shale gas storage spaces.
  • [1]
    Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1921-1938.
    [2]
    张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7):15-18.
    [3]
    郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016, 43(3):317-326.
    [4]
    邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6):641-653.
    [5]
    姜振学, 唐相路, 李卓, 等. 中国典型海相和陆相页岩储层孔隙结构及含气性[M]. 北京:科学出版社, 2018.1-388.
    [6]
    Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine & Petroleum Geology, 2009, 26(6):916-927.
    [7]
    陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37(3):438-444.
    [8]
    魏祥峰, 刘若冰, 张廷山, 等. 页岩气储层微观孔隙结构特征及发育控制因素——以川南-黔北XX地区龙马溪组为例[J]. 天然气地球科学, 2013, 24(5):1048-1059.
    [9]
    郭旭升, 李宇平, 刘若冰, 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业, 2014, 34(6):9-16.
    [10]
    邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6):689-701.
    [11]
    姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23(2):126-134.
    [12]
    聂海宽, 唐玄, 边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报, 2009, 30(4):484-491.
    [13]
    王玉满, 董大忠, 李建忠, 等. 川南下志留统龙马溪组页岩气储层特征[J]. 石油学报, 2012, 33(4):551-561.
    [14]
    Furmann A, Mastalerz M, Bish D, et al.. Porosity and pore size distribution in mudrocks from the Belle Fourche and Second White Specks Formations in Alberta, Canada[J]. AAPG Bulletin,2016,100:1265-1288.
    [15]
    刘文平, 张成林, 高贵冬, 等. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J]. 石油学报, 2017, 38(2):175-184.
    [16]
    雍自权, 张旋, 邓海波, 等. 鄂西地区陡山沱组页岩段有机质富集的差异性[J]. 成都理工大学学报:自然科学版, 2012, 39(6):567-574.
    [17]
    彭波, 刘羽琛, 漆富成, 等. 鄂西地区陡山沱组页岩气成藏地质条件研究[J]. 地质论评, 2017, 63(5):1293-1306.
    [18]
    陈明, 万方, 尹福光. 滇黔桂地区晚震旦世陡山沱期构造-层序岩相古地理[J]. 沉积与特提斯地质, 2001, 21(1):11-26.
    [19]
    闫剑飞, 余谦, 刘伟, 等. 中上扬子地区下古生界页岩气资源前景分析[J]. 沉积与特提斯地质, 2010, 30(3):96-103.
    [20]
    陈孝红, 张国涛, 胡亚. 鄂西宜昌地区埃迪卡拉系陡山沱组页岩沉积环境及其页岩气地质意义[J]. 华南地质与矿产, 2016, 32(2):106-116.
    [21]
    丰国秀, 陈盛吉. 岩石中沥青反射率与镜质体反射率之间的关系[J]. 天然气工业, 1988,(3):7+30-35.
    [22]
    Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6):1071-1098.
    [23]
    Rouquerol J, Sing K S W. Adsorption at the gas-solid and Liquid-Solid Interface[J]. Studies in Surface Science and Catalysis,1982, 10:259-266.
    [24]
    Sing K S W. Characterization of Adsorbents[A] Adsorption:Science and Technology[C]. Netherlands Springer:1989.
    [25]
    郭为, 熊伟, 高树生, 等. 页岩气等温吸附/解吸特征[J]. 中南大学学报(自然科学版), 2013, 44(7):2836-2840.
    [26]
    杨峰, 宁正福, 张世栋,等. 基于氮气吸附实验的页岩孔隙结构表征[J]. 天然气工业, 2013, 33(4):135-140.
    [27]
    L[AKöD]hr S C, Baruch E T, Hall P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of the rmally immature organic matter[J]? Organic Geochemistry, 2015, 87(3):119-132.
    [28]
    Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin,2007, 91(4):475-499.
    [29]
    Romero-Sarmiento M F, Rouzaud J N, Bernard S, et al. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation[J]. Organic Geochemistry, 2014, 71:7-16.
    [30]
    Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103(23):26-31.
    [31]
    葛岩,万欢,黄志龙, 等.页岩气储层微观孔隙结构影响因素及"三元"耦合控制作用[J].油气地质与采收率,2018,25(5):17-23.
    [32]
    郭世钊, 郭建华, 刘辰生, 等. 黔北地区志留系下统龙马溪组页岩气成藏潜力[J]. 中南大学学报(自然科学版), 2016, 47(6):1973-1980.
    [33]
    秦明阳, 郭建华, 何红生, 等. 四川盆地外复杂构造区页岩气地质条件及含气性特征:以湘西北五峰组-龙马溪组为例[J]. 中南大学学报(自然科学版), 2018, 49(8):1979-1990.
    [34]
    翟刚毅, 包书景, 王玉芳,等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38(4):441-447.
    [35]
    徐祖新, 郭少斌. 中扬子地区震旦系陡山沱组页岩储层孔隙结构特征[J]. 现代地质, 2015(1):206-212.
    [36]
    王玉芳, 翟刚毅, 包书景,等. 鄂阳页1井陡山沱组页岩储层含气性及可压性评价[J]. 中国矿业, 2017, 26(6):166-172.
  • Related Articles

    [1]CHEN Tao, LI Zhiwu, LI Jinxi, TONG Kui, WANG Zijian, CAI Hongyan, YUAN Mengyu. A comparative study of the central Sichuan paleo-uplift and the northwest Sichuan paleo-uplift during Caledonian period[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(4): 675-687. DOI: 10.19826/j.cnki.1009-3850.2022.03007
    [2]MA Long, XU Xuejin, YAN Jianfei, CAO Junfeng, MEN Yupeng, DAN Yong, XIONG Guoqing, SUN Yuanyuan, DENG Qi, YANG Fei. Enrichment laws and regional selection of shale gas at the edge of palaeohigh: A case study on the Lower Cambrian Niutitang Formation on the southwestern margin of Xuefeng Uplift[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(3): 426-443. DOI: 10.19826/j.cnki.1009-3850.2022.08003
    [3]LIU Li-hua, WANG Rui-liang, FU Heng, LU Jing. Geological and seismic characteristics of the organic reefs on the Dongsha uplift, Zhujiangkou Basin[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(4): 1-12.
    [4]SHI Pi-tong, GAO Xi-long, YANG Peng-fei, YU Shi-na, WU Qun-hu. Reservoir quality and controlling factors of the Dongying Formation sandstone reservoirs in the eastern slope zone of the Chengbei low uplift in the Bohai Bay[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(3): 47-55.
    [5]CHEN Rong, LI Yong, QIU Dong-zhou. Sedimentary facies types and models for the Neogene deposits on the northern slope of the Chengning uplift[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(2): 8-14.
    [6]LI Zai-hui, WANG Xiong-wu, WANG Xiao-di. Recognition of the A-type granites from the Huangling granite batholith in western Hubei[J]. Sedimentary Geology and Tethyan Geology, 2007, 27(3): 70-77.
    [7]LOU Xiong-ying. The seismic reflection boundary T72 and the Upper Ordovician carbonate karst reservoirs on the Tazhong uplift, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2005, 25(3): 24-32.
    [8]TANG Wen-qing, LIU Yu-ping, CHEN Zhi-liang, ZHANG Qing-zhi, ZHAO Ji-xiang. The preliminary study of the tectonic activities along the boundary faults around the Minshan uplift, western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(4): 31-34.
    [9]ZHANG Xiao-bin, ZHAO Xi-kui. Tectonic evolution and its bearings to the oil and gas with in the central Tarim uplift of the Tarim Basin,Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(2): 70-75.
    [10]JIN Tao, LUO Chuan-rong, WU Ya-jun. Controls of karstification on the Ordovician carbonate reservoirs of the Xayar uplift in Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2001, 21(1): 27-32.

Catalog

    Article views (265) PDF downloads (229) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return