• The Core Journal of China
  • Included in Chinese Scientific and Technical Papers and Citations Database
  • Included in Chinese Science Citation Database (CSCD)
  • Included in Chemical Abstracts (CA)
  • Included in Scopus
Advanced Search
ZHAO Zhiqiang, HE Tongjun, SUN Xiaohao, CAI Keke, FAN Jie, WANG Shiwei. Geochemistry and sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou: An approach[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(3): 48-54.
Citation: ZHAO Zhiqiang, HE Tongjun, SUN Xiaohao, CAI Keke, FAN Jie, WANG Shiwei. Geochemistry and sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou: An approach[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(3): 48-54.

Geochemistry and sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou: An approach

More Information
  • Received Date: July 16, 2019
  • Revised Date: August 11, 2019
  • Published Date: September 29, 2019
  • The sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou are classified, according to lithological associations and geochemical signatures, into the platform-margin to the platform basin sedimentary environments. The siliceous deposits are primarily derived from the terrigenous clastic deposits rather than the hydrothermal deposits. Geochemically, the V/(V + Ni) ratios suggest the euxinic environment for the formation of the siliceous rocks from the Laobao Formation. The Al/(Al + Fe + Mn) ratios and Al-Fe-Mn triangular diagram indicate that the terrigenous clastics have play an important part in the formation of the siliceous rocks. The Al2O3/(Al2O3 + Fe2O3) ratios and Al2O3/(Al2O3 + Fe2O3) versus Fe2O3/TiO2 diagrams indicate the continental marginal environment for the tectonic setting of the siliceous rocks from the Laobao Formation. The δCe values and (La/Ce)N values also show that the siliceous rocks from the Laobao Formation were formed in the sedimentary environments intermediate between the open basin and continental marginal environments.
  • [1]
    伊海生,彭军,夏文杰. 扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J]. 沉积学报,1995,13(4):13-137.
    [2]
    唐世荣,王东安,李任伟. 湘川地区震旦-寒武系硅岩的有机岩石学研究[J]. 沉积学报,1997,15(1):54-59.
    [3]
    陈孝红,汪啸风,毛晓冬. 湘西地区晚震旦世黑色岩系地层层序、沉积环境与成因[J]. 地球学报,1999,20(1):87-95.
    [4]
    彭军,伊海生,夏文杰. 湘黔桂地区晚前寒武纪层状硅质岩地球化学特征及成因[J]. 地质地球化学,1999,27(4):33-39.
    [5]
    彭军,夏文杰,伊海生. 湘西晚前寒武纪层状硅质岩的热水沉积地球化学标志及其环境意义[J]. 岩相古地理,1999,19:29-37
    [6]
    赵国连. 生物作用在二氧化硅聚集沉淀过程中的意义-以皖南浙西的硅质岩为例[J]. 沉积学报,1999,17(1):30-37.
    [7]
    彭军,徐望国. 湘西上震旦统层状硅质岩沉积环境的地球化学标志[J]. 地球化学,2001,30:293-298.
    [8]
    胡杰. 桂东北较深水相前寒武纪之交的硅质微生物岩[J]. 微体古生物学报,2008,25(3):291-305.
    [9]
    常华进,储雪蕾,冯连君,等. 湖南安化留茶坡硅质岩的REE地球化学特征及其意义[J]. 中国地质,2008,35:879-887.
    [10]
    常华进,储雪蕾,冯连君,等. 华南老堡组硅质岩中草莓状黄铁矿-埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报, 2009,25:1001-1007.
    [11]
    杨兴莲,朱茂炎,赵元龙,等. 黔东震旦系-下寒武统黑色岩系稀土元素地球化学特征[J]. 地质论评,2008,54(1):3-15.
    [12]
    张位华,姜立君,高慧,杨瑞东. 贵州寒武系底部黑色硅质岩成因及沉积环境探讨[J]. 矿物岩石地球化学通报,2003,22(2):174-178.
    [13]
    常华进,储雪蕾,冯连君,等. 桂北泗里口老堡组硅质岩的常量、稀土元素特征及成因指示[J]. 沉积学报,2010,28(6):1098-1107.
    [14]
    贵州省地质调查院. 贵州省区域地质志[M]. 北京:地质出版社,2013.
    [15]
    周正茂, 李核良, 赵志强, 等. 贵州1:5万谯家铺幅(H49E023002)、甘龙口幅(H49E023003)、合水幅(H49E024003) 3幅区域地质调查报告[R]. 重庆:重庆市地质矿产勘查开发局607地质队,2018.
    [16]
    Yamamoto K. Geochemical characteristics and depositional environments of cherts and ssociated rocks in the Franciscan and Shimanto terranes[J]. Sedimentary Geology,1987,52:65~108.
    [17]
    朱炳光. 硅质岩成因研究进展[J]. 中国西部科技,2011,10(26):10-11,36.
    [18]
    Murray R W. Chemical criteria to identify the depositional environment ofchert:General principles and applications[J]. Sedimentary Geology,1994,90(3/4):213-232.
    [19]
    Girt G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada,California[J]. Journal of Sedimentary Research,1996, 66(1):107-118.
    [20]
    张聪,黄虎,侯明才. 地球化学方法在硅质岩成因与构造背景研究中的进展及问题[J]. 成都理工大学学报(自然科学版),2017,44(3):293-304.
    [21]
    Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1-4):111-129.
    [22]
    赵志强,凌云,李核良,等. 重庆秀山小茶园大塘坡组含锰岩系地球化学特征分析及意义[J]. 矿物岩石地球化学通报, 2019,38(2):330-341.
    [23]
    谢桂青,胡瑞忠,方维萱,漆亮. 云南墨江金矿床硅质岩沉积环境的地球化学探讨[J]. 地球化学, 2001, 30(5):491-496.
    [24]
    Crowley T J, Berner R A. Palaeoclimate:CO2 and climate change[J]. Science,2001,292(5518):870-872.
    [25]
    毛晓东,汪啸风,陈孝红. 扬子地台东南缘震旦纪-早寒武世沉积环境及有关矿产[J]. 华南地质与矿产,1998,2:24-31.
  • Related Articles

    [1]ZHOU Bo-yu, LIU Tai-xun, HUANG Wen-hua, NIU Wei, XU Shou-yu. Sedimentary characteristics and model for the Cretaceous oil sand deposits in the Fengcheng area, northwestern Junggar Basin[J]. Sedimentary Geology and Tethyan Geology, 2016, 36(2): 11-19.
    [2]CAO Ying-chang, JIN Jie-hua, WANG Yan-zhong, LIU Hui. Sedimentary characteristics and model for the sandstones and conglomerates in the 4th member of the Palaeogene Shahejie Formation, northern Dongying depression, Shandong[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(4): 13-23.
    [3]CHEN Ji, SHI Ji'an, LONG Guo-hui, ZHANG Jian, WANG Mu, ZHOU Fei, ZOU Kai-zhen, MA Jin-ye, SHEN Yu-shan. Sedimentary facies and models for the Palaeogene-Neogene deposits on the northern margin of the Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(3): 16-26.
    [4]WANG Rui-hua, TAN Qin-yin, FU Jian-yuan, CHENG Jin-xiang, WANG Zheng-he, HE Li, YANG Gui-hua, YANG Gui-lai. Sedimentary characteristics of the Silurian organic reefs from the Shiniulan Formation in southeastern Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(2): 10-16.
    [5]ZHOU Jin-song, YU Xing-he, DU Hai-feng, LIU Chao. Sedimentary systems and filling models for the middle part of the third member of the Shahejie Formation in northern Dongpu depression[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(3): 90-95.
    [6]CHEN Rong, LI Yong, QIU Dong-zhou. Sedimentary facies types and models for the Neogene deposits on the northern slope of the Chengning uplift[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(2): 8-14.
    [7]MOU Chuan-long, TAN Qin-yin, YU Qian, WANG Li-quan, WANG Rui-hua. The organic reefs and their reef-forming model for the Upper Permian Changxing Formation in northeastern Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(3): 65-71.
    [8]LUO Jian-ning, ZHU Zhong-fa, XIE Yuan, FENG Xin-tao, YE He-fei, LI Yong-tie, SHEN Qi-ming, TONG Zhen-yan. The biohermites in the Qiangtang Basin and their sedimentary model[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(2): 51-62.
    [9]Fan Jiasong, Wen Chuanfen, Lu Tingqing, Wen Yingchu, Qiang Zitong. Reef-building model for the Permian organic reefs in South China[J]. Sedimentary Geology and Tethyan Geology, 1998, 18(2): 16-19.
    [10]Luo Xuequan. SEDIMENTARY FACIES AND MODEL OF THE PHOSPHORITES IN WESTERN HUNAN[J]. Sedimentary Geology and Tethyan Geology, 1993, 13(3): 33-39.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return