• The Core Journal of China
  • Included in Chinese Scientific and Technical Papers and Citations Database
  • Included in Chinese Science Citation Database (CSCD)
  • Included in Chemical Abstracts (CA)
  • Included in Scopus
Advanced Search
ZENG Qiang, XU Tiande. An approach to the Neogene uplift rates for the eastern Qinghai-Xizang Plateau: Evidence from the fission track ages of the apatite from the Chola granites in western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(3): 92-100.
Citation: ZENG Qiang, XU Tiande. An approach to the Neogene uplift rates for the eastern Qinghai-Xizang Plateau: Evidence from the fission track ages of the apatite from the Chola granites in western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(3): 92-100.

An approach to the Neogene uplift rates for the eastern Qinghai-Xizang Plateau: Evidence from the fission track ages of the apatite from the Chola granites in western Sichuan

More Information
  • Received Date: May 30, 2019
  • Revised Date: August 01, 2019
  • Published Date: September 29, 2019
  • The fission-track analysis is made for the apatite from the Chola granites in western Sichuan in the eastern part of the Qinghai-Xizang Plateau, and gives four fission track ages:4.9 ±0.3 Ma, 6.2 ±0.5 Ma, 7.2 ±0.4 Ma and 7.3 ±0.7 Ma, which have disclosed that the Chola Mountains began to uplift at ca. 7.3 Ma BP. With the aid of fission-track analysis-elevation method, the uplift rates of the Chola Mountains are calculated as 0.15-2 mm/a, with an average of 0.78 mm/a since the Miocene. On the whole, the uplifting of the Chola Mountains displays the evolutionary processes from the rapid uplift to the slow uplift. The results of research in this study may be helpful to the study of the uplift of the eastern Qinghai-Xizang Plateau.
  • [1]
    Nasser N D. Fission track annealing in apatite and sphere[J]. Journal of Geophysical Research,1969,74(2):705-710.
    [2]
    Green P F,Duddy I R,Gleadow A J W,et al. Thermal annealing of fission tracks in apatite:1. A qualitative description[J]. Chemical Geology:Isotope Geoscience Section, 1986, 59:237-253.
    [3]
    Ketchum R A,Domelike R A,Carlson W D. Variability of apatite fission-track annealing kinetics Ⅲ:Extrapolations geological time scales[J]. American Mineralogist,1999,9:1235-1255.
    [4]
    Hearty K A, Foland S, Cook A C, et al. Direct measurement of timing:underpinning a reliable petroleum system model for the midcontinent rift system[J]. AAPG Bulletin, 2007, 91(7):959-979.
    [5]
    赵孟为,磷灰石裂变径迹分析在恢复盆地沉降抬升史中的应用-以鄂尔多斯盆地为例[J]. 地球物理学报,1996,39(1):238-348.
    [6]
    周礼成,冯石,王世成,等. 用裂变径迹长度分布模拟地层剥蚀量和热史[J]. 石油学报,1994,15(3):26-34.
    [7]
    薛爱民. 利用磷灰石裂变径迹资料反演热演化史的综合分析法[J]. 地球物理学报,1994,27(3):338-344.
    [8]
    郭随平,王良书,施央申,等. 应用磷灰石裂变径迹研究沉积盆地的热史[J]. 南京大学学报:自然科学版,1995,31(3):469-475.
    [9]
    周祖翼,廖宗廷,杨凤丽等. 裂变径迹分析及其在沉积盆地研究中的应用[J]. 石油实验地质,2001,23(3):332-337.
    [10]
    赵俊青,纪友亮,王金友,等. 应用磷灰石裂变径迹求取地层剥蚀量[J]. 新疆石油地质,2003,24(6):579-581.
    [11]
    李善鹏,邱楠生. 应用磷灰石裂变径迹分析(AFTA)方法研究沉积盆地古地温[J]. 新疆石学院学报,2003,15(2):13-18.
    [12]
    刘顺生,Wagner GA,谭凯旋,等. 阿尔泰哈巴河岩体的裂变径迹年龄及热历史[J]. 核技术,2002,25(7):525-530.
    [13]
    丁林,钟大赉,潘裕生,等. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报, 1995, 40(6):l479-1500.
    [14]
    袁万明,王世成,杨志强,等. 北喜马拉雅带构造活动的裂变径迹定年证据[J]. 核技术,2002,25(6):451-454.
    [15]
    赵志丹,莫宣学,郭铁鹰,等. 西藏南部岩体裂变径迹年龄与高原隆升[J]. 自然科学进展,2003,13(8):877-880.
    [16]
    Gleadow A J W,Dundy I R,Green P F,et al. Confined fission track lengths in apatite:a diagnostic tool for thermal history analysis[J]. Contrib. Mineral Petrol.,1986,94(4):405-415.
    [17]
    Garver J I,Brandon M,Trodden-Tice M,et al. Exhumation history of organic highlands determined by detrital fission track thermo chrono1ogy[A]. Exhumation Processes:Normal Faulting,Ductile Flow and Erosion[C]. London:Geological Society of London Special Publication,1999.154:283-304.
    [18]
    来庆洲,丁林,王宏伟,等. 青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约[J]. 中国科学,2006,36(9):785-796.
    [19]
    Clark M K,House M A,Royden L H,et al. Late Cenozoic uplift of southeastern Tibet[J]. Geology, 2005,33:525-528.
    [20]
    张毅,李勇,周荣军,等. 晚新生代以来青藏高原东缘的剥蚀过程:来自裂变径迹的证据[J]. 沉积与特提斯地质,2006,26(1):97-102.
    [21]
    王伟涛. 宁夏南部新生代盆地沉积演化及其对青藏高原东北角构造变形的响应[D]. 北京:中国地震局地质研究所,2008.
    [22]
    Zheng DW,Zhang PZ,Wan JL,et al. Rapid exhumation at~8Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology; Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006,48:198-208.
    [23]
    雷永良,钟大赉,季建清,等. 东喜马拉雅构造结更新世两期抬升-剥露事件的裂变径迹证据[J]. 第四纪研究,2008,28(4):584-590.
    [24]
    李勇,侯中健,司光影,等. 青藏高原东缘新生代构造层序与构造事件[J]. 中国地质,2002,29(1):30-36.
    [25]
    王国灿,曹凯,等. 青藏高原新生代构造隆升阶段的时空格局[J]. 中国科学,2011,41(3):332-349.
    [26]
    四川省地质调查院. 四川省地矿局川西北地质队[R]. 成都:四川1:25万阿坝县幅区域地质调查报告,2004.
    [27]
    Enkelmann E,Ratschbacher L,Jonckheere R, et al. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling; Is Tibetan lower crustal flow diverging around the Sichuan Basin[J]? GSA Bulletin,2006,118(5/6):651-671.
    [28]
    Galbraith R F. On statistica1 estimation in fission track dating[J]. Math. Geo1.,1984,16:653-669.
    [29]
    Gleadow A. J. W,Duddy I R,Green P F, et al. Fission track analysis; a new tool for the evaluation of thermal histories and hydrocarbon potential[J]. Australian Petroleum Exploration Association Journal,1983,23:93-102.
    [30]
    Gleadow A. J. W. Geochronology and thermal history of the coast plutonic complex nesr Prince Rupert,British Columbia[J]. Can. J. Earth Sci.,1986,11:320-327.
    [31]
    Wagner G A. Apatite fission-track geochrono-thennometer to 60° C:Projected length studies[J]. Chemical Geology (Isotope Geoscience Section),1988,72:145-153.
    [32]
    Wanger G A. Fission tracks dating of apatites[J]. Earth Planet. Sci. Lett.,1980,14:411.
  • Related Articles

    [1]WANG Dongbing, QIN Yadong, ZENG Jipei, LUO Liang, TANG Yuan, ZENG Xiaowen, HAN Mingming. Early Miocene uplift of the eastern Himalayan syntaxis: Constraints from U-Pb ages of zircon and rutile[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(4): 883-896. DOI: 10.19826/j.cnki.1009-3850.2024.11008
    [2]ZHANG Jianyong, CHANG Jian, LI Wenzheng, FU Xiaodong, YANG Lei, HE Yuan. Tectono-thermal evolution of the Micangshan Uplift in the northern Sichuan Basin[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(1): 58-70. DOI: 10.19826/j.cnki.1009-3850.2021.12005
    [3]SHI Qiu-hua, XIA Bin, WAN Zhi-feng, ZHANG Yun-fan. Tectonic subsidence, sedimentary rates and petroleum resources potential in the Wan'an Basin[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(2): 43-46.
    [4]XU Xiao-song, MEN Yu-peng, ZHANG Hai-quan. Old land,old uplift and palaeogeography[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(3): 1-10.
    [5]QIN Jian-hua. Continental chemical weathering flux,chemical denudation rates and net CO2 consumption rates in the Changjiang drainage basins on the eastern Qinghai-Xizang Plateau[J]. Sedimentary Geology and Tethyan Geology, 2008, 28(1): 1-6.
    [6]ZHANG Yi, LI Yong, ZHOU Rong-jun, A. L. Densmore, N. J. Richardson. The denudation of the eastern margin of the Qinghai-Xizang Plateau since the Late Cenozoic: Evidence from the fission-track ages[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(1): 97-102.
    [7]JIN Wei, LIU Yi-qun, WANG Cheng-shan. The application of the apatite fission track dating to the geothermal history in the northern piedmont zone of the Turpan depression, (Xinjiang)[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(1): 56-61.
    [8]BAI Dao-yuan, JIA Bao-hua, WANG Xian-hui. The apatite fission track analysis applied to the exploration of the uplifting of the Qinghai-Xizang Plateau[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(1): 35-40.
    [9]YIN Hai-sheng, WANG Cheng-shan, LI Ya-lin, LIN Jin-hui, HOU Ming-cai. Sedimentary response to tectonic events: Reconstructed spatio-temporal scale of the Indo-Asian continental collision and Qinghai-Xizang Plateau uplift[J]. Sedimentary Geology and Tethyan Geology, 2001, 21(2): 1-15.
    [10]Wang Longzhang. SEDIMENT FLUX AND MECHANISM FOR THE UPLIFTING OF THE MOUNTAIN SYSTEM AROUND THE JUNGGAR INLAND BASIN[J]. Sedimentary Geology and Tethyan Geology, 1996, 16(3): 39-46.

Catalog

    Article views (326) PDF downloads (169) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return